Preparation and Field Application of A Cellulose Triacetate–Based Optode for Cr(VI) Detection in Environmental Water Samples
DOI:
https://doi.org/10.55749/ijcs.v4i2.147Keywords:
Cellulose triacetate, Environmental monitoring, Hexavalent chromium, Optode, Performance evaluationAbstract
In this study, the optode was fabricated by incorporating 1,5-diphenylcarbazide and the ion carrier Aliquat 336 into a cellulose triacetate polymer matrix, which was subsequently modified using a dual-plasticizer system consisting of oleic acid and acetophenone. The successful synthesis of the optode was justified through FTIR spectroscopy to confirm functional group immobilization and screw micrometer measurements to ensure membrane thickness uniformity. A linear response was obtained within the concentration range of 0.02–0.40 ppm, with a determination coefficient (R²) of 0.9979, a limit of detection of 0.0108 ppm, a limit of quantitation of 0.0328 ppm, precision expressed as a relative standard deviation of 4.458%, and accuracy of 97.51%. The optode demonstrated high analytical sensitivity, as evidenced by a molar absorptivity of 2.262 × 10⁷ M⁻¹ cm⁻¹, along with excellent selectivity against common potentially interfering ions, including Fe(III), Pb(II), Zn(II), and Cd(II). The formed color complex exhibited good stability, remaining unchanged for up to five days. When applied to the determination of Cr(VI) in water samples, the optode yielded a concentration of 0.0664 ppm with satisfactory precision and accuracy. Although this value differed from the concentration obtained using UV–Vis spectrophotometry (0.0881 ppm), the overall performance of the optode was validated. Furthermore, a functional prototype was successfully developed and evaluated using real samples, producing favorable results. Collectively, these outcomes highlight the strong potential for further development and optimization of the proposed system.
References
[1] Wang, Y., Peng, C., Ortega, E.P., Cabrera, A.R., & Valdicieso, A.L. 2020. Cr(VI) adsorption on activated carbon: mechanisms, modeling and limitations in water treatment. J. Environ. Chem. Eng. 8(4). 104031. doi: https://doi.org/10.1016/j.jece.2020.104031
[2] Jobby, R., Jha, P., Yadav, A.K., & Desai, N. 2018. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere. 207. 255–266. doi: https://doi.org/10.1016/j.chemosphere.2018.05.050
[3] Laborda, F., Gorriz, M.P., Bolea, E., & Castillo, J.R. 2007. Determination of total and soluble chromium(VI) in compost by ion chromatography-inductively coupled plasma mass spectrometry. Int. J. Environ. Anal. Chem. 87(3). 227–235. doi: https://doi.org/10.1080/03067310601056028
[4] Onchoke, K.K. & Sasu, S.A. 2016. Determination of hexavalent chromium ((Cr(VI)) concentrations via ion chromatography and UV-Vis spectrophotometry in samples collected from nacogdoches wastewater treatment plant, East Texas (USA). Adv. Environ. Chem. 1(1). 1–10. doi: https://doi.org/10.1155/2016/3468635
[5] Biswas, P., Karn, A.K., Balasubramanian, P., Kale, P.G. 2017. Biosensor for detection of dissolved chromium in potable water: a review. Biosens. Bioelectron. 94. 589–604. doi: https://doi.org/10.1016/j.bios.2017.03.043
[6] Urek, S.K., Francic, N., Turel, M., & Lobnik, A. 2013. Sensing heavy metals using mesoporous-based optical chemical sensors. J. Nanomater. 2013. 1–12. doi: https://doi.org/10.1155/2013/501320
[7] El-Feky, H.H., El-Bahy, S.M., Hassan, A.M.E., & Amin, A.S. 2021. Utility of a novel optical sensor design for ultra-trace detection of chromium colorimetrically in real environmental samples. Int. J. Environ. Anal. Chem. 1–18. doi: https://doi.org/10.1080/03067319.2021.1921759
[8] Suherman, S., Hakim, M.S., & Kuncaka, A. 2021. Optical chemical sensor based on 2,2-furildioxime in sol-gel matrix for determination of Ni2+ in water. Processes. 9(2). 280–288. doi: https://doi.org/10.3390/pr9020280
[9] Arif, Z., Munandar, R., Rohaeti, E., Rafi, M. 2023. Detection of hexavalent chromium ion in water by optode membrane. Indones. J. Chem. Stud. 2(2). 76-82. doi: https://doi.org/10.55749/ijcs.v2i2.39
[10] Arif, Z., Sugiarti, S., Rohaeti, E., Batubara, I. 2025. Detection of hexavalent chromium in solutions using optode membrane: fabrication and methods validation. Pure Appl. Chem. 97(8). 811-824. doi: https://doi.org/10.1515/pac-2024-0348
[11] Adotey, E., Torkmahalleh, M., Hopke, P., Balanay, M. 2023. N,Zn-doped fluorescent sensor based on carbon dots for the subnanomolar detection of soluble Cr(VI) ions. Sensors. 23(3). 1632. doi: https://doi.org/10.3390/s23031632
[12] Huang, S., Zhang, W., Li, B., Li, G., Ni, W., Fang, Y., Wei, F., & Xiao, Q. (2025). Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform. Anal. Chim. Acta. 344493. doi: https://doi.org/10.1016/j.aca.2025.344493
[13] Suah, F.B.M. 2017. Preparation and characterization of a novel Co(II) optode based on polymer inclusion membrane. Anal. Chem. Res. 12. 40–46. doi: https://doi.org/10.1016/j.ancr.2017.02.001
[14] Baezzat, M.R. & Karimi, M. 2013. Design and evaluation of a new optode based on immobilization of indophenol on triacetylcellulose membrane for determination of nickel. Int. J. ChemTech Res. 5(5). 2503–2507.
[15] Zulfi, F., Dahlan, K., Sugita, P. 2014. Karakteristik fluks membran dalam proses filtrasi limbah cair industri pelapisan logam. Jurnal Biofisika. 10(1). 19–29.
[16] Abdoli, S.M., Shafeiei, S., Raoof, A., Ebadi, A., Jafarzadeh, Y., & Aslannejad, H. 2018. Water flux reduction membranes: a pore network study. Chem. Eng. Technol. 1(1). 1–27. doi: https://doi.org/10.1002/ceat.201800130
[17] Shaikh, H.M., Anis, A., Poulose, A.M., Al-Zahrani, S.M., Madhar, N.A., Alhamidi, A., Aldeligan, S.H., & Alsubaie, F.S. 2022. Synthesis and characterization of cellulose triacetate obtained from date palm (Phoenix dactylifera L.) trunk mesh-derived cellulose. Molecules. 27(4). 1434. doi: https://doi.org/10.3390/molecules27041434
[18] Suah, F.B.M. & Ahmad, M. 2017. Preparation and characterization of polymer inclusion membrane based optode for determination of Al3+ ion. Anal. Chim. Acta. 951. 133–139. doi: https://doi.org/10.1016/j.aca.2016.11.040
[19] Association of Official Analytical Chemist. 2016. Official Method of Analysis of AOAC International 20th Ed. Washington: AOAC Pr.
[20] Chikanbanjar, N., Semwal, N., & Jyakhwa, U. 2020. A review article on analytical method validation. J. Pharm. Innov. 1(1). 48–58.
[21] Regulation of the Minister of Health of the Republic of Indonesia Number 32. 2017. Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan Air untuk Keperluan Higiene Sanitasi, Kolam renang, Solus Per Aqua, dan Pemandian Umum. Jakarta: Ministry of Health.
[22] Ratnawati, N.A., Prasetya, A.T., & Rahayu, E.F. 2019. Validasi metode pengujian logam berat timbal (Pb) dengan destruksi basah menggunakan FAAS dalam sedimen sungai banjir kanal barat semarang. Indones. J. Chem. Sci. 8(1). 60–68.
[23] Harvey, D. 2016. Analytical Chemistry 2.1. United States: McGraw-Hill Companies.
[24] Lace, A., Ryan, D., Bowkett, M., & Cleary, J. 2019. Chromium monitoring in water by colorimetry using optimised 1,5-diphenylcarbazide method. Int. J. Environ. Res. Public Health. 16(10). 1803–1817. doi: https://doi.org/10.3390/ijerph16101803
[25] Tavallali, H. & Dorostghoal, L. 2014. Design and evaluation of a lead (II) optical sensor based on immobilization of ditizone on triacetyl cellulose membrane. Int. J. ChemTech Res. 6. 3179–3186
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Indonesian Journal of Chemical Studies

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
















