Comparative Analysis of FABA Waste Composition in Various Coal-Fired Power Plant Industries in Several Countries and Indonesia: A Review

Authors

  • M. Sulthon Nurharmansyah Putra Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia
  • Agus Eko Prasojo Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia
  • Anggito Budiman Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia
  • Mentari Zikri Anty Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia
  • Lutfi Aditya Hasnowo School of Nuclear Science and Engineering, Tomsk Polytechnic University, Tomsk Oblast 634050, Russia

DOI:

https://doi.org/10.55749/ijcs.v3i2.58

Keywords:

Characteristic XRF, Fly ash bottom ash, Metal oxide, Power plant industries

Abstract

Fly Ash and Bottom Ash (FABA) is the waste from burning coal in coal-fired power plants and consists of chemical compounds, such as SiO₂, Al₂O₃, Fe₂O₃, and CaO. This waste poses an environmental challenge and an opportunity for the construction industry. This study conducted a comparative analysis of the composition of FABA from several coal-fired power plants in Indonesia and other countries, such as Thailand, China, Malaysia, France, Italy, and Portugal. In particular, this study assessed the XRF data from several other references. The XRF test data showed significant variations in the FABA content, influenced by coal type, combustion method, and emission management technology. The high SiO₂ content in the Cirebon and Teluk Sirih coal-fired power plants showed potential for pozzolanic applications. Meanwhile, the high Fe₂O₃ in Tanjung Enim and Sudimoro had the potential for metallurgical applications. In addition, the high CaO content of Teluk Sirih allowed its use in lime production and soil stabilization. However, high levels of SO₃, especially in Cirebon, required more attention in processing because of its impact on concrete quality and environmental pollution. With proper processing, FABA could be a valuable resource in various industries, reducing reliance on natural raw materials. This study highlighted the potential for the sustainable use of FABA and proposed management measures to address environmental challenges. The optimal use of FABA reduced negative environmental impacts and opened up significant economic opportunities, supporting the circular economy in the energy and construction sectors.

References

Widyarsana I.M.W., Tambunan S.A., & Mulyadi A.A. 2021. Identification of fly ash and bottom ash (FABA) hazardous waste generation from the industrial sector and its reduction management in indonesia. Res. Sq. 1. 1–16.

Mekkadinah, Suwarno S., Garniwa I., & Agustina H. 2020. Review regulation on the determination of fly ash and bottom ash from coal fired power plant as hazardous waste in effort to increase utilization in indonesia. IOP Conf. Ser. Earth Environ. Sci. 519. 012051. doi: https://doi.org/10.1088/1755-1315/519/1/012051.

Besari D.A.A., Anggara F., Petrus H.T.B.M., Astuti W., & Husnah W.A. 2021. Effect of power plant operating conditions on fly ash and bottom ash composition: A case study from power plant in Lampung. IOP Conf. Ser. Earth Environ. Sci. 851. 012039. doi: https://doi.org/10.1088/1755-1315/851/1/012039.

Siregar F.I., Prasojo A.E., Julianingrum S.T., Aulia D.R.Y., Wardha S.N., & Gita M. 2024. Light pyrotechnics using gunpowder derived from fly ash bottom ash (FABA) waste and activated carbon. Indones. J. Chem. Stud. 3(1). 28–32. doi: https://doi.org/10.55749/ijcs.v3i1.42.

Pillay D.L., Olalusi O.B., & Mostafa M.M.H. 2021. A review of the engineering properties of concrete with paper mill waste ash—towards sustainable rigid pavement construction. Silicon. 13(9). 3191–3207. doi: https://doi.org/10.1007/s12633-020-00664-2.

Vashistha P., Oinam Y., Shi J., & Pyo S. 2024. Application of lime mud as a sustainable alternative construction material: A comprehensive review of approaches. J. Build. Eng. 87. 109114. doi: https://doi.org/10.1016/j.jobe.2024.109114.

Olivia M., Noviandri R., Wibisono G., & Sitompul I.R. 2022. Mechanical properties of fly ash bottom ash (FABA) geopolymer hybrid concrete using portland cement, in Proceedings of the 5th International Conference on Sustainable Civil Engineering Structures and Construction Materials. pp 173–186. doi: https://doi.org/10.1007/978-981-16-7924-7_11.

Collivignarelli M.C., Cillari G., Ricciardi P., Miino M.C., Torretta V., Rada E.C., & Abbà A. 2020. The production of sustainable concrete with the use of alternative aggregates: A review. Sustain. 12(19). 1–34. doi: https://doi.org/10.3390/SU12197903.

Evans L., Harrison P., Lawrence J., Casell J., Thiemann D., & Kim J. 2023. Coal Ash Primer. Earthjustice.org

Becerra-Duitama J.A. & Rojas-Avellaneda D. 2022. Pozzolans: A review. Eng. Appl. Sci. Res. 49(4). 495–504. doi: https://doi.org/10.14456/easr.2022.49.

Chindaprasirt P., Jaturapitakkul C., Chalee W., & Rattanasak U. 2009. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 29(2). 539–543. doi: https://doi.org/10.1016/j.wasman.2008.06.023.

Latifi N., Marto A., Rashid A.S.A., & Yii J.L.J. 2015. Strength and physico-chemical characteristics of fly ash–bottom ash mixture. Arab. J. Sci. Eng. 40(9). 2447–2455. doi: https://doi.org/10.1007/s13369-015-1647-4.

ul Haq E., Kunjalukkal Padmanabhan S., & Licciulli A. 2014. Synthesis and characteristics of fly ash and bottom ash based geopolymers–A comparative study. Ceram. Int. 40(2). 2965–2971. doi: https://doi.org/10.1016/j.ceramint.2013.10.012.

Lu Y., Tian A., Zhang J., Tang Y., Shi P., Tang Q., & Huang Y. 2020. Physical and chemical properties, pretreatment, and recycling of municipal solid waste incineration fly ash and bottom ash for highway engineering: A literature review. Adv. Civ. Eng. 2020. doi: https://doi.org/10.1155/2020/8886134.

Matsumoto S., Ogata S., Shimada H., Sasaoka T., Kusuma G.J., & Gautama R.S. 2016. Application of coal ash to postmine land for prevention of soil erosion in coal mine in indonesia: utilization of fly ash and bottom ash. Adv. Mater. Sci. Eng. 2016. 1–8. doi: https://doi.org/10.1155/2016/8386598.

Abd Manan T.S.B., Beddu S., Mohamad D., Kamal N.L.M., Mohtar W.H.M.W., Khan T., Jusoh H., Sarwono A., Ali M.M., Muda Z.C. and Nazri F.M. 2021. Physicochemical and leaching properties of coal ashes from Malaysian coal power plant. Chem. Phys. Lett. 769. 138420. doi: https://doi.org/10.1016/j.cplett.2021.138420.

Perwitasari P., Anggorowati H., Ulfa U., Shabrina H.M., & Adhiatma A. 2024. The influence of aqua regia usage in the leaching and extraction process of silica from coal fly ash. Equilib. J. Chem. Eng. 8(1). 63. doi: https://doi.org/10.20961/equilibrium.v8i1.86969.

Rahayu L.S., Maming & Diansari P. 2023. Acid mine drainage management plan and utilization of fly ash as neutralizing agent (a case study of post-mining pits in Palaran, East Kalimantan). IOP Conf. Ser. Earth Environ. Sci. 1272(1). 012012.doi: https://doi.org/10.1088/1755-1315/1272/1/012012.

Adelizar A.S., Olvianas M., Adythia D.M., Syafiyurrahman M.F., Pratama I.G.A.A.N., Astuti W., & Petrus H.T.B.M. 2020. Fly ash and bottom ash utilization as geopolymer: correlation on compressive strength and degree of polymerization observed using FTIR. IOP Conf. Ser. Mater. Sci. Eng. 742(1). 012042. doi: https://doi.org/10.1088/1757-899X/742/1/012042.

Nugraha H.A., Setyawan D., & Saleh E. 2024. Acid mine drainage prevention through the dry coating method using fly ash and bottom ash. Ecol. Eng. Environ. Technol. 25(2). 102–111. doi: https://doi.org/10.12912/27197050/175860.

Nurtaqwim A.M., Soemitro R.A.A., Warnana D.D., Satrya T.R., & Putra Y.D. 2024. The impact of coal combustion waste (fly ash and bottom ash) on the properties of clay soil (case study: national road section Demak–Kudus, Indonesia). J. Infrastruct. Facil. Asset Manag. 6(1). 45-56. doi: https://doi.org/10.12962/jifam.v6i0.19936.

Manurung H., Rosita W., Petrus H.B.T.M., & Bendiyasa I.M. 2020. Amorphous silicate decomposition from non-magnetic coal fly ash using sodium hydroxide. IOP Conf. Ser. Mater. Sci. Eng. 742(1). 012041. doi: https://doi.org/10.1088/1757-899X/742/1/012041.

Kaniowski W., Taler J., Wang X., Kalemba-Rec I., Gajek M., Mlonka-Mędrala A., Nowak-Woźny D., & Magdziarz A. 2022. Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers. Fuel. 326. 125122. doi: https://doi.org/10.1016/j.fuel.2022.125122.

Prasojo A.E., Anitasari R., Sijabat W.N., & Nurrosyid N. 2023. Iron determination in multivitamin tablets: enhancing military nutritional preparedness based linear regression method. Int. J. Appl. Math. Sci. Technol. Natl. Def. 1(2). 51–58. doi: https://doi.org/10.58524/app.sci.def.v1i2.165.

Huang C., Fujisawa S., de Lima T.F., Tait A.N., Blow, E.C., Tian Y., Bilodeau S., Jha A., Yaman F., Peng H.T. and Batshon H.G. 2021. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4(11). 837–844. doi: https://doi.org/10.1038/s41928-021-00661-2.

Bulei C., Kiss I., & Alexa V. 2021. Development of metal matrix composites using recycled secondary raw materials from aluminium wastes. Mater. Today Proc. 45. 4143–4149. doi: https://doi.org/10.1016/j.matpr.2020.11.926.

Rafieizonooz M., Khankhaje E., & Rezania S. 2022. Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. J. Build. Eng. 49. 104040. doi: https://doi.org/10.1016/j.jobe.2022.104040.

Darmansyah D., You S.-J., & Wang Y.-F. 2023. Advancements of coal fly ash and its prospective implications for sustainable materials in Southeast Asian countries: A review. Renew. Sustain. Energy Rev. 188. 113895. doi: https://doi.org/10.1016/j.rser.2023.113895.

Olivia M., Pratama R.S., Giri F.R., Sitompul I.R., Kamaldi A., Wibisono G., & Saputra E. 2022. The effect of portland cement on fly ash bottom ash geopolymer hybrid concrete exposed to peat water environment. J. Appl. Mater. Technol. 3(2). 24–33. doi: https://doi.org/10.31258/Jamt.3.2.24-33.

Shen H., Luo Z., Xiong R., Liu X., Zhang L., Li Y., Du W., Chen Y., Cheng H., Shen G. and Tao S. 2021. A critical review of pollutant emission factors from fuel combustion in home stoves. Environ. Int. 157. 106841. doi: https://doi.org/10.1016/j.envint.2021.106841.

Wang Y., Li, L., An Q., Tan H., Li P., & Peng J. 2022. Effect of different additives on ash fusion characteristic and mineral phase transformation of iron-rich Zhundong coal. Fuel. 307. 121841. doi: https://doi.org/10.1016/j.fuel.2021.121841.

Yu D., Yu X., Wu J., Han J., Liu F., & Pan H. 2021. A comprehensive review of ash issues in oxyfuel combustion of coal and biomass: mineral matter transformation, ash formation, and deposition. Energy & Fuels. 35(21). 17241–17260. doi: https://doi.org/10.1021/acs.energyfuels.1c02231.

Xu X., Guo Z., Zhu D., Pan J., Yang C., & Li S. 2023. Application of coal-based direct reduction-magnetic separation process for recycling of high-iron-content non-ferrous metallurgical wastes: challenges and opportunities. Process Saf. Environ. Prot. 183. 59-76. doi: https://doi.org/10.1016/j.psep.2023.12.057.

Greaver T.L., Sullivan T.J., Herrick J.D., Barber M.C., Baron J.S., Cosby B.J., Deerhake M.E., Dennis R.L., Dubois J.J.B., Goodale C.L. and Herlihy A.T. 2012. Ecological effects of nitrogen and sulfur air pollution in the US: What do we know? Front. Ecol. Environ. 10(7). 365–372. doi: https://doi.org/10.1890/110049.

Downloads

Published

2024-12-31

How to Cite

Putra, M. S. N., Prasojo, A. E., Budiman, A., Anty, M. Z., & Hasnowo, L. A. (2024). Comparative Analysis of FABA Waste Composition in Various Coal-Fired Power Plant Industries in Several Countries and Indonesia: A Review. Indonesian Journal of Chemical Studies, 3(2), 82–89. https://doi.org/10.55749/ijcs.v3i2.58

Most read articles by the same author(s)