A Critical Technology Implementation of Sodium Solid-state Battery as the Secure Long-Duration Energy Storage toward the Terra-Watt Grid Projects

Authors

  • Tedi Kurniadi Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia https://orcid.org/0009-0007-4224-2701
  • Mirad Fahri Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia https://orcid.org/0000-0002-4886-6650
  • Fidela Aurellia Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia
  • Naufan Nurrosyid Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia; Department of Material Science and Engineering, Monash University, Australia https://orcid.org/0000-0002-5281-9232

DOI:

https://doi.org/10.55749/ijcs.v1i2.17

Keywords:

Secure energy storage, Sodium solid-state battery, Terra-watt projects

Abstract

The current lithium-ion battery (LIB) has become a vital technology for realizing a highly-productive society. The current system can be found easily in every personal electronic device, such as smartphones, laptops, smartwatches, and digital cameras. However, the future of LIBs is questionable due to the scarcity and security issues. The common electrolytes in this system are highly flammable, toxic, and easy to leak. Thus, inherit them to be applied for more mass-reliable energy sources, the terra-watt projects. Therefore, the development of an all-solid-state battery based on earth-abundant and cost-effective processing should be carried out immediately to dominate the market and for future civilization. Herein, we promoted a Sodium solid-state battery (SSB) that potentially be a key in energy storage technology due to its mechanical properties, electrochemical stability, high ion conductivity, and robust cyclic performance. Furthermore, a five-year direct implementation strategy of SSB was also presented, constructed from sodium and chromium electrodes.

Author Biographies

Tedi Kurniadi, Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia

Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kawasan IPSC, Sentul, Bogor 16810, Indoensia

Mirad Fahri, Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia

Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kawasan IPSC, Sentul, Bogor 16810, Indoensia

Fidela Aurellia, Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia

Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kawasan IPSC, Sentul, Bogor 16810, Indoensia

Naufan Nurrosyid, Department of Chemistry, Republic of Indonesia Defense University, Bogor, Indonesia; Department of Material Science and Engineering, Monash University, Australia

Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Kawasan IPSC, Sentul, Bogor 16810, Indonesia; Departement of Materials Science & Engineering, Monash University, 20 Research Way, Clayton VIC 3800, Australia

References

BP-British Petroleum. 2022. BP Energy Outlook 2022. Edition. London, UK.

United Nations Development Programme and World Energy Council. 2017. Energy and the challenge of sustainability. New York, NY 10017 USA.

Grand View Research. 2021. Market Analysis Report: Lithium-ion Battery Market Size, Share & Trends Analysis Report By Product (LCO, LFP, NCA, LMO, LTO, NMC), By Application (Consumer Electronics, Energy Storage Systems, Industrial), By Region, And Segment Forecasts 2022 - 2030. San Francisco, CA 94105, United States.

Zhang, L., Liu, X., Dou, Y., Zhang, B., Yang, H., Dou, S., Liu, H., Huang, Y., & Hu, X. 2017. Mass Production and Pore Size Control of Holey Carbon Microcages. Angew. Chem. Int. Ed. 56(44). 13790-13794. doi:10.1002/anie.201708732. https://doi.org/10.1002/anie.201708732

Zhang, T., & Ran, F. 2021. Design Strategies of 3D Carbon-Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Adv. Funct. Mater. 31(17). 2010041. doi: 10.1002/adfm.202010041. https://doi.org/10.1002/adfm.202010041

Abraham, K.M. 2020. How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?. ACS Energy Lett. 5(11). 3544-3547. doi:10.1021/acsenergylett.0c02181. https://doi.org/10.1021/acsenergylett.0c02181

Gao, H., Xin, S., Xue, L., & Goodenough, J. B. 2018. Stabilizing a High-EnergyDensity Rechargeable Sodium Battery with a Solid Electrolyte. Chem. 4(4). 833-844. doi: 10.1016/j.chempr.2018.01.007. https://doi.org/10.1016/j.chempr.2018.01.007

John, E. 2021. An A-Z Guide to the Elements. Oxford: Oxford University Press.

Gao, H., Xin, S., Xue, L., & Goodenough, J.B. 2018. Stabilizing a High-EnergyDensity Rechargeable Sodium Battery with a Solid Electrolyte. Chem. 4(4) 833-844. doi: 10.1016/j.chempr.2018.01.007. https://doi.org/10.1016/j.chempr.2018.01.007

Yao, Y., Wei, Z., Wang, H., Huang, H., Jiang, Y., Wu, X., Yao, X., Wu, Z., & Yu, Y. 2020. Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. Adv. Energy Mater. 10(12). 1903698. doi: 10.1002/aenm.201903698. https://doi.org/10.1002/aenm.201903698

Sun, Y.K., & Kamat, P.V. 2021. Advances in Solid-State Batteries, a Virtual Issue. ACS Energy Lett. 6(6). 2356-2358. doi: 10.1021/acsenergylett.1c01079. https://doi.org/10.1021/acsenergylett.1c01079

Rajendran, S., Tang, Z., George, A., Cannon, A., Neumann, C., Sawas, A., Ryan, E., Turchanin, A., & Arava, L.M.R. 2021. Inhibition of Lithium Dendrite Formatio in Lithium Metal Batteries via Regulated Cation Transport through Ultrathin Sub‐Nanometer Porous Carbon Nanomembranes. Adv. Energy Mater. 11(29), 2100666. doi: 10.1002/aenm.202100666. https://doi.org/10.1002/aenm.202100666

Buissette, V., 2022. All-solid-state Batteries-Without Liquid Electrolyte. ATZextra worldwide. 27(1). 34-37. doi: 10.1007/s40111-022-0325-2. https://doi.org/10.1007/s40111-022-0325-2

Famprikis, T., Canepa, P., Dawson, J.A., Islam, M.S., & Masquelier, C. 2019. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12). 1278-1291. doi: 10.1038/s41563-019-0431-3. https://doi.org/10.1038/s41563-019-0431-3

Dai, H., Chen, Y., Xu, W., Hu, Z., Gu, J., Wei, X., Xie, F., Zhang, W., Wei, W., Guo, R., & Zhang, G. 2020. A Review of Modification Methods of Solid Electrolytes for All Solid State Sodium Ion Batteries. Energy Technol. 9(1). 2000682. doi: 10.1002/ente.202000682. https://doi.org/10.1002/ente.202000682

Lu, X., Xia, G., Lemmon, J.P., & Yang, Z. 2010. Advanced materials for sodium beta alumina batteries: Status, challenges and perspectives. J. Power Sources. 195(9). 2431-2442. doi: 10.1016/j.jpowsour.2009.11.120. https://doi.org/10.1016/j.jpowsour.2009.11.120

Noguchi, Y., Kobayashi, E., Plashnitsa, L.S., Okada, S., & Yamaki, J. 2013. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim. Acta. 101. 59-65. doi: 10.1016/j.electacta.2012.11.038. https://doi.org/10.1016/j.electacta.2012.11.038

Li, Y., Deng, Z., Peng, J., Chen, E., Yu, Y., Li, X., Luo, J., Huang, Y., Zhu, J., Fang, C., Li, Q., Han, J., & Huang, Y. 2018. A P2-Type Layered Superionic Conductor Ga-Doped Na2Zn2TeO6 for All-Solid-State SodiumIon Batteries. Chem. Eur. J. 24(5). 1057-1061. doi: 10.1002/chem.201705466. https://doi.org/10.1002/chem.201705466

Deng, Z., Gu, J., Li, Y., Li, S., Peng, J., Li, X., Luo, J., Huang, Y., Fang, C., Li, Q., Han, J., Huang, Y., & Zhao, Y. 2019. Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries. Electrochim. Acta. 298. 121-126. doi: 10.1016/j.electacta.2018.12.092. https://doi.org/10.1016/j.electacta.2018.12.092

Moon, C.K., Lee, H.J., Park, K.H., Kwak, H., Heo, J.W., Choi, K., Yang, H., Kim, M.S., Hong, S.T., Lee, J.H., & Jung, Y.S. 2018. Vacancy-Driven Na+ Superionic Conduction in New Ca-Doped Na3PS4 for All-Solid-State Na-Ion Batteries. ACS Energy Lett. 3(10). 2504-2512. doi: 10.1021/acsenergylett.8b01479. https://doi.org/10.1021/acsenergylett.8b01479

Adekoya, D., Qian, S., Gu, X., Wen, W., Li, D., Ma, J. and Zhang, S., 2021. DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13(1). 1-44. doi: 10.1007/s40820-020-00522-1. https://doi.org/10.1007/s40820-020-00522-1

Nurrosyid, N., Fahri, M., Apriliyanto, Y.B. and Basuki, R., 2022. Novel Absorber Material Design Based on Thiazole Derivatives Using DFT/TD-DFT Calculation Methods for High-Performance Dye Sensitized Solar Cell. Indones. J. Chem. Stud. 1(1), 16-23. doi: 10.55749/ijcs.v1i1.5. https://doi.org/10.55749/ijcs.v1i1.5

Payandeh, S., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., Remhof, A., & Battaglia, C. 2020. NidoBorate/Closo-Borate Mixed-Anion Electrolytes for All-Solid-State Batteries. Chem. Mater. 32(3). 1101-1110. doi: 10.1021/acs.chemmater.9b03933. https://doi.org/10.1021/acs.chemmater.9b03933

Cheng, M., Qu, T., Zi, J., Yao, Y., Liang, F., Ma, W., Yang, B., Dai, Y., & Lei, Y. 2020. A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology. 31(42). 425401. doi: 10.1088/1361-6528/aba059. https://doi.org/10.1088/1361-6528/aba059

Zhao, C., Liu, L., Qi, X., Lu, Y., Wu, F., Zhao, J., Yu, Y., Hu, Y.-S., & Chen, L. 2018. Solid-State Sodium Batteries. Adv. Energy Mater. 8(17). 1703012. doi:10.1002/aenm.201703012. https://doi.org/10.1002/aenm.201703012

Ma, Q., Liu, J., Qi, X., Rong, X., Shao, Y., Feng, W., Nie, J., Hu, Y.-S., Li, H., Huang, X., Chen, L., & Zhou, Z. 2017. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. J. Mater. Chem. 5(17). 7738-7743. doi: 10.1039/c7ta01820g. https://doi.org/10.1039/C7TA01820G

Zhou, D., Liu, R., Zhang, J., Qi, X., He, Y.B., Li, B., Yang, Q.H., Hu, Y.S., & Kang, F. 2017. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy. 33. 45-54. doi: 10.1016/j.nanoen.2017.01.02. https://doi.org/10.1016/j.nanoen.2017.01.027

Shi, J., Xiong, H., Yang, Y., & Shao, H. 2018. Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries. Solid State Ion. 326. 136-144. doi: 10.1016/j.ssi.2018.09.019. https://doi.org/10.1016/j.ssi.2018.09.019

Yang, H.L., Zhang, B.W., Konstantinov, K., Wang, Y.X., Liu, H.K., & Dou, S.X. (2021). Progress and Challenges for All‐Solid‐State Sodium Batteries. Adv. Energy and Sustainability Res. 2(2). 2000057. doi: 10.1002/aesr.202000057. https://doi.org/10.1002/aesr.202000057

Chen, G., Zhang, F., Zhou, Z., Li, J., & Tang, Y. 2018. A Flexible Dual-Ion Battery Based on PVDF-HFP-Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability. Adv. Energy Mater. 8(25), 1801219. doi: 10.1002/aenm.201801219. https://doi.org/10.1002/aenm.201801219

Song, S., Dong, Z., Fernandez, C., Wen, Z., Hu, N., & Lu, L. 2019. Nanoporous ceramic-poly(ethylene oxide) composite electrolyte for sodium metal battery. Mater. Lett. 236. 13-15. doi: 10.1016/j.matlet.2018.10.059. https://doi.org/10.1016/j.matlet.2018.10.059

Ma, C., Dai, K., Hou, H., Ji, X., Chen, L., Ivey, D., & Wei, W. 2018. High IonConducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers. Adv. Sci. 5(5). 1700996. doi: 10.1002/advs.201700996. https://doi.org/10.1002/advs.201700996

Wu, J., Yu, Z., Wang, Q., & Guo, X. 2020. High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Mater. 24. 467-471. doi: 10.1016/j.ensm.2019.07.012. https://doi.org/10.1016/j.ensm.2019.07.012

Yu, C., Park, J., Jung, H., Chung, K., Aurbach, D., Sun, Y., & Myung, S. (2015). NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8(7). 2019-2026. doi: 10.1039/c5ee00695c. https://doi.org/10.1039/C5EE00695C

Komaba, S., Takei, C., Nakayama, T., Ogata, A., & Yabuuchi, N. 2010. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. commun. 12(3). 355-358. doi: 10.1016/j.elecom.2009.12.033. https://doi.org/10.1016/j.elecom.2009.12.033

Luo, C., Li, Q., Shen, D., Zheng, R., Huang, D., & Chen, Y. 2021. Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solidstate batteries. Energy Storage Mater. 43. 463-470. doi: 10.1016/j.ensm.2021.09.031. https://doi.org/10.1016/j.ensm.2021.09.031

Wu, E., Banerjee, S., Tang, H., Richardson, P., Doux, J., & Qi, J. et al. 2021. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun. 12(1). doi: 10.1038/s41467-021-21488-7. https://doi.org/10.1038/s41467-021-21488-7

Schmidt, O., Hawkes, A., Gambhir, A. and Staffell, I. 2017. The future cost of electrical energy storage based on experience rates. Nature Energy. 2(8). 1-8. doi: 10.1038/nenergy.2017.110. https://doi.org/10.1038/nenergy.2017.110

Mallapragada, D.S., Sepulveda, N.A. and Jenkins, J.D. 2020. Long-run system value of battery energy storage in future grids with increasing wind and solar generation. Appl. Energy. 275. 115390. doi: 10.1016/j.apenergy.2020.115390. https://doi.org/10.1016/j.apenergy.2020.115390

Günter, N. and Marinopoulos, A. 2016. Energy storage for grid services and applications: Classification, market review, metrics, and methodology for evaluation of deployment cases. J. Energy Storage. 8. 226-234. doi: 10.1016/j.est.2016.08.011. https://doi.org/10.1016/j.est.2016.08.011

Cheng, Z., Pan, H., Li, F., Duan, C., Liu, H., Zhong, H., Sheng, C., Hou, G., He, P. and Zhou, H. 2022. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy. Nat. Commun. 13(1). 1-9. doi: 10.1038/s41467-021-27728-0. https://doi.org/10.1038/s41467-021-27728-0

Hatzell, K.B. and Zheng, Y. 2021. Prospects on large-scale manufacturing of solid-state batteries. MRS Energy & Sustainability, 8(1), pp.33-39. doi: 10.1557/s43581-021-00004-w. https://doi.org/10.1557/s43581-021-00004-w

Li, C., Wang, Z.Y., He, Z.J., Li, Y.J., Mao, J., Dai, K.H., Yan, C. and Zheng, J.C. 2021. An advance review of solid-state battery: Challenges, progress and prospects. Sustain. Mater. Technol. 29. e00297. doi: 10.1016/j.susmat.2021.e00297. https://doi.org/10.1016/j.susmat.2021.e00297

Downloads

Published

2022-12-08

How to Cite

Kurniadi, T., Fahri, M., Aurellia, F., & Nurrosyid, N. (2022). A Critical Technology Implementation of Sodium Solid-state Battery as the Secure Long-Duration Energy Storage toward the Terra-Watt Grid Projects. Indonesian Journal of Chemical Studies, 1(2), 43–48. https://doi.org/10.55749/ijcs.v1i2.17

Most read articles by the same author(s)