A Critical Technology Implementation of Sodium Solid-state Battery as the Secure Long-Duration Energy Storage toward the Terra-Watt Grid Projects
DOI:
https://doi.org/10.55749/ijcs.v1i2.17Keywords:
Secure energy storage, Sodium solid-state battery, Terra-watt projectsAbstract
The current lithium-ion battery (LIB) has become a vital technology for realizing a highly-productive society. The current system can be found easily in every personal electronic device, such as smartphones, laptops, smartwatches, and digital cameras. However, the future of LIBs is questionable due to the scarcity and security issues. The common electrolytes in this system are highly flammable, toxic, and easy to leak. Thus, inherit them to be applied for more mass-reliable energy sources, the terra-watt projects. Therefore, the development of an all-solid-state battery based on earth-abundant and cost-effective processing should be carried out immediately to dominate the market and for future civilization. Herein, we promoted a Sodium solid-state battery (SSB) that potentially be a key in energy storage technology due to its mechanical properties, electrochemical stability, high ion conductivity, and robust cyclic performance. Furthermore, a five-year direct implementation strategy of SSB was also presented, constructed from sodium and chromium electrodes.
References
BP-British Petroleum. 2022. BP Energy Outlook 2022. Edition. London, UK.
United Nations Development Programme and World Energy Council. 2017. Energy and the challenge of sustainability. New York, NY 10017 USA.
Grand View Research. 2021. Market Analysis Report: Lithium-ion Battery Market Size, Share & Trends Analysis Report By Product (LCO, LFP, NCA, LMO, LTO, NMC), By Application (Consumer Electronics, Energy Storage Systems, Industrial), By Region, And Segment Forecasts 2022 - 2030. San Francisco, CA 94105, United States.
Zhang, L., Liu, X., Dou, Y., Zhang, B., Yang, H., Dou, S., Liu, H., Huang, Y., & Hu, X. 2017. Mass Production and Pore Size Control of Holey Carbon Microcages. Angew. Chem. Int. Ed. 56(44). 13790-13794. doi:10.1002/anie.201708732. https://doi.org/10.1002/anie.201708732
Zhang, T., & Ran, F. 2021. Design Strategies of 3D Carbon-Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Adv. Funct. Mater. 31(17). 2010041. doi: 10.1002/adfm.202010041. https://doi.org/10.1002/adfm.202010041
Abraham, K.M. 2020. How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?. ACS Energy Lett. 5(11). 3544-3547. doi:10.1021/acsenergylett.0c02181. https://doi.org/10.1021/acsenergylett.0c02181
Gao, H., Xin, S., Xue, L., & Goodenough, J. B. 2018. Stabilizing a High-EnergyDensity Rechargeable Sodium Battery with a Solid Electrolyte. Chem. 4(4). 833-844. doi: 10.1016/j.chempr.2018.01.007. https://doi.org/10.1016/j.chempr.2018.01.007
John, E. 2021. An A-Z Guide to the Elements. Oxford: Oxford University Press.
Gao, H., Xin, S., Xue, L., & Goodenough, J.B. 2018. Stabilizing a High-EnergyDensity Rechargeable Sodium Battery with a Solid Electrolyte. Chem. 4(4) 833-844. doi: 10.1016/j.chempr.2018.01.007. https://doi.org/10.1016/j.chempr.2018.01.007
Yao, Y., Wei, Z., Wang, H., Huang, H., Jiang, Y., Wu, X., Yao, X., Wu, Z., & Yu, Y. 2020. Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. Adv. Energy Mater. 10(12). 1903698. doi: 10.1002/aenm.201903698. https://doi.org/10.1002/aenm.201903698
Sun, Y.K., & Kamat, P.V. 2021. Advances in Solid-State Batteries, a Virtual Issue. ACS Energy Lett. 6(6). 2356-2358. doi: 10.1021/acsenergylett.1c01079. https://doi.org/10.1021/acsenergylett.1c01079
Rajendran, S., Tang, Z., George, A., Cannon, A., Neumann, C., Sawas, A., Ryan, E., Turchanin, A., & Arava, L.M.R. 2021. Inhibition of Lithium Dendrite Formatio in Lithium Metal Batteries via Regulated Cation Transport through Ultrathin Sub‐Nanometer Porous Carbon Nanomembranes. Adv. Energy Mater. 11(29), 2100666. doi: 10.1002/aenm.202100666. https://doi.org/10.1002/aenm.202100666
Buissette, V., 2022. All-solid-state Batteries-Without Liquid Electrolyte. ATZextra worldwide. 27(1). 34-37. doi: 10.1007/s40111-022-0325-2. https://doi.org/10.1007/s40111-022-0325-2
Famprikis, T., Canepa, P., Dawson, J.A., Islam, M.S., & Masquelier, C. 2019. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12). 1278-1291. doi: 10.1038/s41563-019-0431-3. https://doi.org/10.1038/s41563-019-0431-3
Dai, H., Chen, Y., Xu, W., Hu, Z., Gu, J., Wei, X., Xie, F., Zhang, W., Wei, W., Guo, R., & Zhang, G. 2020. A Review of Modification Methods of Solid Electrolytes for All Solid State Sodium Ion Batteries. Energy Technol. 9(1). 2000682. doi: 10.1002/ente.202000682. https://doi.org/10.1002/ente.202000682
Lu, X., Xia, G., Lemmon, J.P., & Yang, Z. 2010. Advanced materials for sodium beta alumina batteries: Status, challenges and perspectives. J. Power Sources. 195(9). 2431-2442. doi: 10.1016/j.jpowsour.2009.11.120. https://doi.org/10.1016/j.jpowsour.2009.11.120
Noguchi, Y., Kobayashi, E., Plashnitsa, L.S., Okada, S., & Yamaki, J. 2013. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim. Acta. 101. 59-65. doi: 10.1016/j.electacta.2012.11.038. https://doi.org/10.1016/j.electacta.2012.11.038
Li, Y., Deng, Z., Peng, J., Chen, E., Yu, Y., Li, X., Luo, J., Huang, Y., Zhu, J., Fang, C., Li, Q., Han, J., & Huang, Y. 2018. A P2-Type Layered Superionic Conductor Ga-Doped Na2Zn2TeO6 for All-Solid-State SodiumIon Batteries. Chem. Eur. J. 24(5). 1057-1061. doi: 10.1002/chem.201705466. https://doi.org/10.1002/chem.201705466
Deng, Z., Gu, J., Li, Y., Li, S., Peng, J., Li, X., Luo, J., Huang, Y., Fang, C., Li, Q., Han, J., Huang, Y., & Zhao, Y. 2019. Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries. Electrochim. Acta. 298. 121-126. doi: 10.1016/j.electacta.2018.12.092. https://doi.org/10.1016/j.electacta.2018.12.092
Moon, C.K., Lee, H.J., Park, K.H., Kwak, H., Heo, J.W., Choi, K., Yang, H., Kim, M.S., Hong, S.T., Lee, J.H., & Jung, Y.S. 2018. Vacancy-Driven Na+ Superionic Conduction in New Ca-Doped Na3PS4 for All-Solid-State Na-Ion Batteries. ACS Energy Lett. 3(10). 2504-2512. doi: 10.1021/acsenergylett.8b01479. https://doi.org/10.1021/acsenergylett.8b01479
Adekoya, D., Qian, S., Gu, X., Wen, W., Li, D., Ma, J. and Zhang, S., 2021. DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13(1). 1-44. doi: 10.1007/s40820-020-00522-1. https://doi.org/10.1007/s40820-020-00522-1
Nurrosyid, N., Fahri, M., Apriliyanto, Y.B. and Basuki, R., 2022. Novel Absorber Material Design Based on Thiazole Derivatives Using DFT/TD-DFT Calculation Methods for High-Performance Dye Sensitized Solar Cell. Indones. J. Chem. Stud. 1(1), 16-23. doi: 10.55749/ijcs.v1i1.5. https://doi.org/10.55749/ijcs.v1i1.5
Payandeh, S., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., Remhof, A., & Battaglia, C. 2020. NidoBorate/Closo-Borate Mixed-Anion Electrolytes for All-Solid-State Batteries. Chem. Mater. 32(3). 1101-1110. doi: 10.1021/acs.chemmater.9b03933. https://doi.org/10.1021/acs.chemmater.9b03933
Cheng, M., Qu, T., Zi, J., Yao, Y., Liang, F., Ma, W., Yang, B., Dai, Y., & Lei, Y. 2020. A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology. 31(42). 425401. doi: 10.1088/1361-6528/aba059. https://doi.org/10.1088/1361-6528/aba059
Zhao, C., Liu, L., Qi, X., Lu, Y., Wu, F., Zhao, J., Yu, Y., Hu, Y.-S., & Chen, L. 2018. Solid-State Sodium Batteries. Adv. Energy Mater. 8(17). 1703012. doi:10.1002/aenm.201703012. https://doi.org/10.1002/aenm.201703012
Ma, Q., Liu, J., Qi, X., Rong, X., Shao, Y., Feng, W., Nie, J., Hu, Y.-S., Li, H., Huang, X., Chen, L., & Zhou, Z. 2017. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. J. Mater. Chem. 5(17). 7738-7743. doi: 10.1039/c7ta01820g. https://doi.org/10.1039/C7TA01820G
Zhou, D., Liu, R., Zhang, J., Qi, X., He, Y.B., Li, B., Yang, Q.H., Hu, Y.S., & Kang, F. 2017. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy. 33. 45-54. doi: 10.1016/j.nanoen.2017.01.02. https://doi.org/10.1016/j.nanoen.2017.01.027
Shi, J., Xiong, H., Yang, Y., & Shao, H. 2018. Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries. Solid State Ion. 326. 136-144. doi: 10.1016/j.ssi.2018.09.019. https://doi.org/10.1016/j.ssi.2018.09.019
Yang, H.L., Zhang, B.W., Konstantinov, K., Wang, Y.X., Liu, H.K., & Dou, S.X. (2021). Progress and Challenges for All‐Solid‐State Sodium Batteries. Adv. Energy and Sustainability Res. 2(2). 2000057. doi: 10.1002/aesr.202000057. https://doi.org/10.1002/aesr.202000057
Chen, G., Zhang, F., Zhou, Z., Li, J., & Tang, Y. 2018. A Flexible Dual-Ion Battery Based on PVDF-HFP-Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability. Adv. Energy Mater. 8(25), 1801219. doi: 10.1002/aenm.201801219. https://doi.org/10.1002/aenm.201801219
Song, S., Dong, Z., Fernandez, C., Wen, Z., Hu, N., & Lu, L. 2019. Nanoporous ceramic-poly(ethylene oxide) composite electrolyte for sodium metal battery. Mater. Lett. 236. 13-15. doi: 10.1016/j.matlet.2018.10.059. https://doi.org/10.1016/j.matlet.2018.10.059
Ma, C., Dai, K., Hou, H., Ji, X., Chen, L., Ivey, D., & Wei, W. 2018. High IonConducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers. Adv. Sci. 5(5). 1700996. doi: 10.1002/advs.201700996. https://doi.org/10.1002/advs.201700996
Wu, J., Yu, Z., Wang, Q., & Guo, X. 2020. High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Mater. 24. 467-471. doi: 10.1016/j.ensm.2019.07.012. https://doi.org/10.1016/j.ensm.2019.07.012
Yu, C., Park, J., Jung, H., Chung, K., Aurbach, D., Sun, Y., & Myung, S. (2015). NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8(7). 2019-2026. doi: 10.1039/c5ee00695c. https://doi.org/10.1039/C5EE00695C
Komaba, S., Takei, C., Nakayama, T., Ogata, A., & Yabuuchi, N. 2010. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. commun. 12(3). 355-358. doi: 10.1016/j.elecom.2009.12.033. https://doi.org/10.1016/j.elecom.2009.12.033
Luo, C., Li, Q., Shen, D., Zheng, R., Huang, D., & Chen, Y. 2021. Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solidstate batteries. Energy Storage Mater. 43. 463-470. doi: 10.1016/j.ensm.2021.09.031. https://doi.org/10.1016/j.ensm.2021.09.031
Wu, E., Banerjee, S., Tang, H., Richardson, P., Doux, J., & Qi, J. et al. 2021. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun. 12(1). doi: 10.1038/s41467-021-21488-7. https://doi.org/10.1038/s41467-021-21488-7
Schmidt, O., Hawkes, A., Gambhir, A. and Staffell, I. 2017. The future cost of electrical energy storage based on experience rates. Nature Energy. 2(8). 1-8. doi: 10.1038/nenergy.2017.110. https://doi.org/10.1038/nenergy.2017.110
Mallapragada, D.S., Sepulveda, N.A. and Jenkins, J.D. 2020. Long-run system value of battery energy storage in future grids with increasing wind and solar generation. Appl. Energy. 275. 115390. doi: 10.1016/j.apenergy.2020.115390. https://doi.org/10.1016/j.apenergy.2020.115390
Günter, N. and Marinopoulos, A. 2016. Energy storage for grid services and applications: Classification, market review, metrics, and methodology for evaluation of deployment cases. J. Energy Storage. 8. 226-234. doi: 10.1016/j.est.2016.08.011. https://doi.org/10.1016/j.est.2016.08.011
Cheng, Z., Pan, H., Li, F., Duan, C., Liu, H., Zhong, H., Sheng, C., Hou, G., He, P. and Zhou, H. 2022. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy. Nat. Commun. 13(1). 1-9. doi: 10.1038/s41467-021-27728-0. https://doi.org/10.1038/s41467-021-27728-0
Hatzell, K.B. and Zheng, Y. 2021. Prospects on large-scale manufacturing of solid-state batteries. MRS Energy & Sustainability, 8(1), pp.33-39. doi: 10.1557/s43581-021-00004-w. https://doi.org/10.1557/s43581-021-00004-w
Li, C., Wang, Z.Y., He, Z.J., Li, Y.J., Mao, J., Dai, K.H., Yan, C. and Zheng, J.C. 2021. An advance review of solid-state battery: Challenges, progress and prospects. Sustain. Mater. Technol. 29. e00297. doi: 10.1016/j.susmat.2021.e00297. https://doi.org/10.1016/j.susmat.2021.e00297
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Indonesian Journal of Chemical Studies
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.