Development of Adhesive Materials from Polystyrene Foam Waste

Authors

  • Ahmad Dzaky Mualim Department of Chemical Analysis, AKA Bogor Polytechnic, Jl. Pangeran Sogiri No. 283, Bogor, 16154, Indonesia https://orcid.org/0009-0002-5186-2041
  • Achmad Nandang Roziafanto Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri No. 283, Bogor, 16154, Indonesia https://orcid.org/0000-0002-8358-2565
  • Abiyyu Adistya Wahid Sabarno Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri No. 283, Bogor, 16154, Indonesia
  • Muhammad Fadhil Khoirurrizal Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri No. 283, Bogor, 16154, Indonesia
  • Putri Alfiani Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri No. 283, Bogor, 16154, Indonesia
  • Saffana Maryam Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri No. 283, Bogor, 16154, Indonesia
  • Yasinta Rahmatul Putri Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri No. 283, Bogor, 16154, Indonesia

DOI:

https://doi.org/10.55749/ijcs.v3i2.62

Keywords:

Adhesive, Environment, Polystyrene foam waste, Recycling and reuse, Shear strength

Abstract

Polystyrene is a type of plastic that is difficult to decompose naturally, leading to waste that contributes to environmental pollution. This study developed adhesive materials based on polystyrene waste to reduce environmental impacts while addressing the need for eco-friendly adhesives. The adhesives were prepared by dissolving polystyrene foam waste in gasoline and acetone with various compositions. The solvents with a composition ratio of gasoline and acetone of 100:0; 90:10; 80:20; 70:30; 60:40; and 50:50 were coded as A, B, C, D, E, and F. Tests were carried out to determine the solubility of polystyrene foam in various solvent compositions and the mechanical properties of samples, including shear force, shear strength, and strain (elongation). Paper, cardboard, and wood were used as gluing materials. The adhesive strength was also compared with that of commercial adhesives. The adhesive samples were then characterized using Fourier-Transform Infrared Spectroscopy (FTIR). The shear strength results obtained for samples code A, B, C, D, E, and F were 119.95 kPa, 103.68 kPa, 96.64 kPa, 124.56 kPa, 150.08 kPa, and 157.80 kPa, respectively. The findings showed that the adhesive sample coded F synthesized using a solvent composition of 50: 50 gasoline: acetone exhibited superior adhesive ability than other variations. This sample can potentially serve as a substitute for commercial adhesives that are suitable for bonding various materials.

References

Huamaira T., Kurniawan B., Hasanah S., Christina E., & At-Tsaqib J. H. 2022. Modifikasi struktur polistirena menggunakan maleat anhidrida sebagai pengikat silang dan benzoil peroksida sebagai inisiator. AJMEE. 1(1). 25-34. doi: https://doi.org/10.55927/ajmee.v1i1.1310.

Kibria M.G., Masuk N.I., Safayet R., Nguyen H.Q., & Mourshed M. 2023. Plastic waste: challenges and opportunities to mitigate pollution and effective management. Int. J. Environ. Res. 17(1). 20. doi: https://doi.org/10.1007/s41742-023-00507-z.

Kharun M. & Svintsov A.P., Polystyrene concrete as the structural thermal insulating material. 2017. Int. J. Adv. Appl. Sci. 4(10). 40-45. doi: https://doi.org/10.21833/ijaas.2017.010.007.

Chaukura N., Gwenzi W., Bunhu T., Ruziwa D.T., & Pumure, I. 2016. Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resour. Conserv. Recycl. 107. 157-165. doi: https://doi.org/10.1016/j.resconrec.2015.10.031.

Lithner D., Larsson A., & Dave G. 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 409(18). 3309-3324. doi: https://doi.org/10.1016/j.scitotenv.2011.04.038.

Uttaravalli A.N., Dinda S., Gidla B.R., Kasturi G., Kasala P., & Penta G. 2021. Studies on development of adhesive material from post-consumer (waste) expanded polystyrene: a two-edged sword approaches. Process Saf. Environ. Prot. 145. 312-320. doi: https://doi.org/10.1016/j.psep.2020.08.026.

Maafa I.M. 2021. Pyrolysis of polystyrene waste: A review. Polymers. 13(2). 225. doi: https://doi.org/10.3390/polym13020225.

Suhad M.A., Ghalib D., & Dunya K. 2016. Effective replacement of fine aggregates by expanded polystyrene beads in concrete. Int. J. Eng. Res. Sci. Technol. 5(3). 45–53. doi: https://doi.org/10.13140/RG.2.2.36030.59208.

Ramli-Sulong N.H., Mustapa S.A.S., & Abdul-Rashid M.K. 2019. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J. Appl. Polym. Sci. 136(20). 47529. doi: https://doi.org/10.1002/app.47529.

Chandru G., Vijay N., Vignesh V., & Kumar S. 2017. Study on behavior of concrete blocks with EPS and partial replacement of fly ash and quarry dust. Int. J. Adv. Eng. Res. Sci. 4(1). 237021. doi: https://doi.org/10.22161/ijaers.4.1.38.

Chun K.S., Fahamy N.M.Y., Yeng C.Y., Choo H.L., Ming P.M., & Tshai K.Y. 2018. Wood plastic composites made from corn husk fiber and recycled polystyrene foam. J. Eng. Sci. Technol , 13(11). 3445-3456.

De Paula F.G., de Castro M.C., Ortega P.F., Blanco C., Lavall R.L., & Santamaría R. 2018. High value activated carbons from waste polystyrene foams. Micropor. Mesopor. Mat. 267. 181-184. doi: https://doi.org/10.1016/j.micromeso.2018.03.027.

Narendra B.S., Chaitanya V.L., & Chetankumar G.I. 2014. Waste thermocol to glue for better environment. Int. J. Innov. Res. Adv. Eng . 1(6). 98–101.

Trushna D.P., Isha P.K., & Kuldeep R.D. 2018. An experimental study on the use of waste thermocol and thinner waste as an admixture in concrete. Int. J. Innovations Eng. Sci. 3(5). 109–113.

Herman V., Takacs H., Duclairoir F., Renault O., Tortaic J.H., Viala B. 2015. Core double–shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Adv. 5. 51371–51381. doi: https://doi.org/10.1039/C5RA06847A.

Alsharaeh E.H., Othman A.A., Aldosari M.A. 2014. Microwave irradiation effect on the dispersion and thermal stability of RGO nanosheets within a polystyrene matrix. Materials 7. 5212–5224. doi: https://doi.org/10.3390/ma7075212.

Tan W.T., Radhi M.M., Ab Rahman M.Z., Kassim A.B. 2010. Synthesis and characterization of grafted polystyrene with acrylonitrile using gamma-irradiation. J. Appl. Sci. 10. 139–144. doi: https://doi.org/10.3923/jas.2010.139.144.

Downloads

Published

2024-12-31

How to Cite

Mualim, A. D., Roziafanto, A. N., Sabarno, A. A. W., Khoirurrizal, M. F., Alfiani, P. ., Maryam, S., & Putri, Y. R. (2024). Development of Adhesive Materials from Polystyrene Foam Waste. Indonesian Journal of Chemical Studies, 3(2), 52–57. https://doi.org/10.55749/ijcs.v3i2.62