Exploring the Potential of Carbon-based Radar Absorbing Material Innovations

Authors

  • Mirad Fahri Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia
  • Patricya Inggrid Wilhelmina Bolilanga Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia https://orcid.org/0009-0000-7140-9231
  • Gunaryo Gunaryo Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia
  • Elva Stiawan Leiden Institute of Chemistry, Leiden University, Wassenaarseweg 76, 2333 AL Leiden, Netherlands
  • Tedi Kurniadi Department of Chemistry, Republic of Indonesia Defense University, IPSC Sentul, Bogor, 16810, Indonesia

DOI:

https://doi.org/10.55749/ijcs.v3i2.56

Keywords:

Carbon Materials, Electromagnetic Absorption, Material Efficiency, Nanocomposites, Radar absorption

Abstract

This review explored the potential of carbon-based radar-absorbing materials (RAM), which had gained significant attention due to their superior properties and performance. In response to the growing demand for stealth technology in the military and civilian sectors, traditional radar-absorbing materials encountered limitations: weight, cost, and effectiveness. Carbon-based materials, such as carbon nanotubes, graphene, and various composites, offered lightweight, flexible, and tunable solutions that enhanced electromagnetic wave absorption across a wide frequency range. This paper examined the underlying mechanisms of radar wave absorption in carbon-based materials, highlighting their advantages over conventional options. In addition, recent advancements in fabrication techniques, including 3D printing and hybrid composite development, were also discussed, emphasizing their role in optimizing performance and sustainability. By synthesizing current research findings, this review aimed to provide a comprehensive understanding of the carbon-based RAM potential in advancing the future of stealth technology. Ultimately, this study presented insights that contribute to the continuing investigation in advanced materials science, suggesting a potential way to develop materials that can enhance radar absorption capabilities and extend their applications in modern technology.

References

Bassiouny L., Samir T., Abdallah S., Ashour H., & Anwar A. 2021. Enhancement of carbon fiber/epoxy composite electrical, optical and thermal properties by using different types of nano-additives. IOP Conf. Ser. Mater. Sci. Eng. 1172(1). 012028. doi: https://doi.org/10.1088/1757-899x/1172/1/012028.

Zhukov P.A. & Kirillov V.Y. 2020. The application of radar absorbing materials to reduce interference emissions from instruments and devices of spacecraft electrical systems. IOP Conf. Ser. Mater. Sci. Eng. 868(1). doi: https://doi.org/10.1088/1757-899X/868/1/012009.

Srivastava A.K., Samaria B., Sharma P., Chauhan V.S., Soni S., & Shukla A. 2019. Electromagnetic wave absorption properties of reduced graphene oxide encapsulated iron nanoparticles. Mater. Lett. 253. 171–174. doi: https://doi.org/10.1016/j.matlet.2019.06.011.

Ban G.D., Liu Z.H., Ye S.T., Yang H.B., Tao R., & Luo P. 2017. Microwave absorption properties of carbon fiber radar absorbing coatings prepared by water-based technologies. RSC Adv. 7(43). 26658–26664. doi: https://doi.org/10.1039/c7ra02631e.

Chan Y.L., You K.Y., Zul M., Mayzan H., Jusoh M.A., Esa F., & Lin Y. 2019. Investigation into return loss characteristic of graphene oxide / zinc ferrite / epoxy composite at x-band frequency. 23(4). 593–602.

Gharagozloo-Bahrami A.B., Bahrami S.H., Saber-Samandari S., & Kowsari E. 2022. New functional graphene oxide based on transition metal complex (Cr/Fe) as wave absorber. J. Mater. Res. Technol. 20. 3683–3696. doi: https://doi.org/10.1016/j.jmrt.2022.08.061.

Li J.S., Huang H., Zhou Y.J., Zhang C.Y., & Li Z.T. 2017. Research progress of graphene-based microwave absorbing materials in the last decade. J. Mater. Res. 32(7). 1213–1230. doi: https://doi.org/10.1557/jmr.2017.80.

Balci O., Polat E.O., Kakenov N., & Kocabas C. 2015. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6. 1–10. doi: https://doi.org/10.1038/ncomms7628.

Afanasiev A. & Bakhracheva Y. 2019. Analysis of the Types of Radar Absorbing Materials. NBI Technol. (2). 35–38. doi: https://doi.org/10.15688/nbit.jvolsu.2019.2.6.

Duan M.C., Yu L.M., Sheng L.M., An K., Ren W., & Zhao X.L. 2014. Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite. J. Appl. Phys. 115(17). doi: https://doi.org/10.1063/1.4873636.

Song P., Ma Z., Qiu H., Ru Y., & Gu J. 2022. High-efficiency electromagnetic interference shielding of rGo@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14(1). 1–13. doi: https://doi.org/10.1007/s40820-022-00798-5.

Das S., Nayak G.C., Sahu S.K., Routray P.C., Roy A.K., & Baskey H. 2014. Microwave absorption properties of double-layer radar absorbing materials based on doped barium hexaferrite/TiO2/conducting carbon black. J. Eng. (United Kingdom). 2014. doi: https://doi.org/10.1155/2014/468313.

Jangir V., Kumawat M., & Sharma M.K. 2019. Military radar system. Int. J. Trend Sci. Res. Dev. 3(3). 1124–1126. doi: https://doi.org/10.31142/ijtsrd23026.

Juniansyah G., Latifah S.M., & Prajitno D.H. 2021. Synthesis polymer matrix composite epoxy-FeNdB-Mn for radar absorbing material application. Int. J. Mech. Eng. Technol. Apl. 2(1). 1–8. doi: https://doi.org/10.21776/MECHTA.2021.002.01.1.

Zuo Y., Luo J., Cheng M., Zhang K., & Dong R. 2018. Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/ NiFe2O4-decorated reduced graphene oxide nanosheets. J. Alloys Compd. 744. 310-320. doi: https://doi.org/10.1016/j.jallcom.2018.02.071.

Zhang B., Wang J., Wang T., Su X., Yang S., Chen W., Wang J., Sun J., & Peng J. 2019. High-performance microwave absorption epoxy composites fi lled with hollow nickel nanoparticles modified graphene via chemical etching method. Compos. Sci. Technol. 176(4). 54–63. doi: https://doi.org/10.1016/j.compscitech.2019.04.001.

Yang F., Hou X., Wang L., Li Y., & Yu M. 2020. Preparation of Reduced graphene oxide/magnetic metal composites and its electromagnetic wave absorption properties. IOP Conf. Ser. Mater. Sci. Eng. 729(1). doi: https://doi.org/10.1088/1757-899X/729/1/012039.

Xue J., Wu C., Du X., Ma W., Wen K., Huang S., & Liu Y. 2020. Preparation and properties of functional particle Fe3O4-rGO and its modified fiber/epoxy composite for high-performance microwave absorption structure. Mater. Res. Express. 7. 045303. doi: https://doi.org/10.1088/2053-1591/ab8257.

Shen Z., Xing H., Wang H., Jia H., Liu Y., Chen A., & Yang P. 2018. Synthesis and enhanced electromagnetic absorption properties of Co-doped CeO2/rGO nanocomposites. J. Alloys Compd. 753. 28–34. doi: https://doi.org/10.1016/j.jallcom.2018.04.195.

Kim S.Y. & Kim S.S. 2018. Design of radar absorbing structures utilizing carbon-based polymer composites. Polym. Polym. Compos. 26(1). 105–110. doi: https://doi.org/10.1177/096739111802600113.

Yin Q., Xing H., Shu R., Ji X., Tan D., & Gan Y. 2016. Enhanced microwave absorption properties of CeO2 nanoparticles supported on reduced graphene oxide. Nano. 11(5). 1650058. doi: https://doi.org/10.1142/S1793292016500582.

Ahmad A.F., Ab Aziz S., Abbas Z., Obaiys S.J., Khamis A.M., Hussain I.R., & Zaid M.H.M. 2018. Preparation of a chemically reduced graphene oxide reinforced epoxy resin polymer as a composite for electromagnetic interference shielding and microwave-absorbing applications. Polymers (Basel). 10(11). 1180. doi: https://doi.org/10.3390/polym10111180.

Usvanda L.N. & Zainuri M. 2016. Sintesis dan karakterisasi lapisan radar absorbing material (RAM) berbahan dasar BaM/PANi pada rentang gelombang X-band dengan variasi ketebalan. J. Sains dan Seni ITS. 5(2). 74–79.

Chu Z., Deng W., Xu J., Wang F., Zhang Z., & Hu Q. 2023. Synthesis of RGO/Cu@FeAl2O4 composites and its applications in electromagnetic microwave absorption coatings. Materials (Basel). 16(2). 740. doi: https://doi.org/10.3390/ma16020740.

Xue J., Wu C., Du X., Ma W., Wen K., Huang S., Liu Y., Liu Y., & Zhao G. 2020. Preparation and properties of functional particle Fe3O4-rGO and its modified fiber/epoxy composite for high-performance microwave absorption structure. Mater. Res. Express. 7(4). 45303. doi: https://doi.org/10.1088/2053-1591/ab8257.

Aytaç A., İpek H., Aztekin K., & Çanakçı B. 2020. A review of the radar absorber material and structures. Sci. J. Mil. Univ. L. Forces. 198(4). 931–946. doi: https://doi.org/10.5604/01.3001.0014.6064.

Bychanok D., Gorokhov G., Meisak D., Kuzhir P., Maksimenko S., Wang Y., Han Z., Gao X., & Yue H. 2017. Design of carbon nanotube-based broadband radar absorber for ka-band frequency range. Prog. Electromagn. Res. M. 53. 9–16. doi: https://doi.org/10.2528/PIERM16090303.

Guo Y., Song X., Ma S., Qi Y., Yuan X., & Fan H. 2023. Preparation of bunched CeO2 and study on microwave absorbing properties with MWCNTs binary composite. Particuology. 73. 95–102. doi: https://doi.org/10.1016/j.partic.2022.04.002.

Aslam J. & Wang Y. 2023. Metal oxide wrapped by reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries. Nanomaterials. 13(2). 1–19. doi: https://doi.org/10.3390/nano13020296.

Esmaeili S. & Sedghi H. 2019. Radar absorbing materials mechanism and effective parameters in behavior improving. Int. J. Recent Technol. Eng. 8(1). 1955–1959.

Kim S.H., Lee S.Y., Zhang Y., Park S.J., & Gu J. 2023. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10(32). 1–22. doi: https://doi.org/10.1002/advs.202303104.

Chhetri S., Adak N.C., Samanta P., Murmu N.C., & Kuila T. 2017. Functionalized reduced graphene oxide/epoxy composites with enhanced mechanical properties and thermal stability. Polym. Test. 63. 1–11. doi: V10.1016/j.polymertesting.2017.08.005.

Taryana Y., Manaf A., Sudrajat N., & Wahyu Y. 2019. Material penyerap gelombang elektromagnetik jangkauan frekuensi radar. J. Keramik dan Gelas Indones. 28(1). 1–29.

Hashim N., Muda Z., Hussein M.Z., Isa I.M., Mohamed A., Kamari A., Bakar S.A., Mamat M., & Jaafar A.M. 2016. A brief review on recent graphene oxide-based material nanocomposites: synthesis and applications. J. Mater. Environ. Sci. 7(9). 3225–3243.

Vinoy K.J. & Jha R.M. 1995. Trends in radar absorbing materials technology. Sadhana. 20(5). 815–850. doi: https://doi.org/10.1007/BF02744411.

Wang Y., Li T., Zhao L., Hu Z., & Gu Y. 2011. Research progress on nanostructured radar absorbing materials. Energy Power Eng. 3(4). 580–584. doi: https://doi.org/10.4236/epe.2011.34072.

Chen J., Yao B., Li C., & Shi G. 2013. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon N. Y. 64(1). 225–229. doi: https://doi.org/10.1016/j.carbon.2013.07.055.

Singh R.K., Kumar R., & Singh D.P. 2016. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 6(69). 64993–65011. doi: https://doi.org/10.1039/c6ra07626b.

Abbas Q., Shinde P.A., Abdelkareem M.A., Alami A.H., Mirzaeian M., Yadav A., & Olabi A.G. 2022. Graphene synthesis techniques and environmental applications. Materials (Basel). 15(21). doi: https://doi.org/10.3390/ma15217804.

Gomez G.S., Lis M.J., Li J., Coldea P., Prada L. De Vela J.F., & Fores G.R. 2019. Nanomaterial chemistry and technology research article resin composite systems. 1(1). 11–18.

Ruiz-Perez F., López-Estrada S.M., Tolentino-Hernández R.V., & Caballero-Briones F. 2022. Carbon-based radar absorbing materials: A critical review. J. Sci. Adv. Mater. Devices. 7(3). doi: https://doi.org/10.1016/j.jsamd.2022.100454.

Caballero-Briones F., Kaftelen-Odabaşı H., Gnanaseelan N., Ruiz-Perez F., Tolentino-Hernandez R.V., Kamaraj S.K., Lopez-Estrada S.M., Espinosa-Faller F.J., & Jimenez-Melero E. 2023. International research in graphene-oxide based materials for net-zero energy, military and aeronautic applications catalysed by Tamaulipas, Mexico: a mini review. Front. Mater. 10. 1–5. doi: https://doi.org/10.3389/fmats.2023.1192724.

Ickecan D., Zan R., & Nezir S. 2017. Eco-Friendly synthesis and characterization of reduced graphene oxide. J. Phys. Conf. Ser. 902(1). doi: https://doi.org/10.1088/1742-6596/902/1/012027.

Qin F. & Brosseau C. 2012. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111(6). doi: https://doi.org/10.1063/1.3688435.

Ramya K. 2013. Radar absorbing material (RAM). Appl. Mech. Mater. 390. 450–453. doi: https://doi.org/10.4028/www.scientific.net/AMM.390.450.

Kumar A. & Singh S. 2018. Development of coatings for radar absorbing materials at X-band. IOP Conf. Ser. Mater. Sci. Eng. 330(1). doi: https://doi.org/10.1088/1757-899X/330/1/012006.

Winson D., Choudhury B., Selvakumar N., Barshilia H., & Nair R.U. 2019. Design and development of a hybrid broadband radar absorber using metamaterial and graphene. IEEE Trans. Antennas Propag. 67(8). 5446–5452. doi: https://doi.org/10.1109/TAP.2019.2907384.

Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., & Botiz I. 2020. Reduced graphene oxide today. J. Mater. Chem. C. 8(4). 1198–1224. doi: https://doi.org/10.1039/c9tc04916a.

Olowojoba G.B., Kopsidas S., Eslava S., Gutierrez E.S., Kinloch A.J., Mattevi C., Rocha V.G., & Taylor A.C. 2017. A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. J. Mater. Sci. 52(12). 7323–7344. doi: https://doi.org/10.1007/s10853-017-0969-x.

Zhao H., Ding J., & Yu H. 2018. Variation of mechanical and thermal properties in sustainable graphene oxide/epoxy composites. Sci. Rep. 8(1). 1–8. doi: https://doi.org/10.1038/s41598-018-34976-6.

Keyte J., Pancholi K., & Njuguna J. 2019. Recent Developments in Graphene Oxide/Epoxy Carbon Fiber-Reinforced Composites. Front. Mater. 6. 1–30. doi: https://doi.org/10.3389/fmats.2019.00224.

Modafferi V., Santangelo S., Fiore M., Fazio E., Triolo C., Patanè S., Ruffo R., & Musolino M.G. 2019. Transition metal oxides on reduced graphene oxide nanocomposites: Evaluation of physicochemical properties. J. Nanomater. 2019. doi: https://doi.org/10.1155/2019/1703218.

Taryana Y., Manaf A., Sudrajat N., & Wahyu Y. 2019. Electromagnetic wave absorbing materials on radar frequency range. J. Keramik dan Gelas Indones. 28(1). 1–28.

Gutiérrez-Portocarrero S., Roquero P., Becerril-González M., & Zúñiga-Franco D. 2019. Study of structural defects on reduced graphite oxide generated by different reductants. Diam. Relat. Mater. 92. 219–227. doi: https://doi.org/10.1016/j.diamond.2019.01.001.

de Barros N.G., Gonzaga-Neto A.C., Vaccioli K.B., Angulo H.R.V., de Andrade e Silva L.G., Toffoli S.M., & Valera T.S. 2023. Graphene oxide: a comparison of reduction methods. C-Journal Carbon Res. 9(3). doi: https://doi.org/10.3390/c9030073.

Faniyi I.O., Fasakin O., Olofinjana B., Adekunle A.S., Oluwasusi T.V., Eleruja M.A., & Ajayi E.O.B. 2019. The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches. SN Appl. Sci. 1(10). 1–7. doi: https://doi.org/10.1007/s42452-019-1188-7.

Liu J., Yang H., Zhen S.G., Poh C.K., Chaurasia A., Luo J., Wu X., Yeow E.K.L., Sahoo N.G., Lin J., & Shen Z. 2013. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RCS Adv. 207890. 1–18. doi: https://doi.org/10.1039/C3RA41366G.

Netkueakul W., Korejwo D., Hammer T., Chortarea, S., Rupper P., Braun O., Calame M., Rothen-Rutishauser B., Buerki-Thurnherr T., Wick P., & Wang J. 2020. Release of graphene-related materials from epoxy-based composites: Characterization, quantification and hazard assessment: In vitro. Nanoscale. 12(19). 10703–10722. doi: https://doi.org/10.1039/c9nr10245k.

Wang Z., Zhao P., He D., Cheng Y., Liao L., Li S., Luo Y., Peng Z., & Li P. 2018. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance. Phys. Chem. Chem. Phys. 20(20). 14155–14165. doi: https://doi.org/10.1039/c8cp00160j.

Taufantri Y., Irdhawati I., & Asih I.A.R.A. 2016. Sintesis dan karakterisasi grafena dengan metode reduksi grafit oksida menggunakan pereduksi Zn. J. Kim. Val. 2(1). 17–23. doi: https://doi.org/10.15408/jkv.v2i1.2233.

Dideikin A.T. & Vul’ A.Y. 2019. Graphene oxide and derivatives: The place in graphene family. Front. Phys. 6. doi: https://doi.org/10.3389/fphy.2018.00149.

Alzubaidy F.H., Al-Hadad A., & Abdul-Zahra N.I. 2023. Biosynthesis of Reduced graphene oxide nanoparticles from Uropathogenic K.oxytoca. Med. Sci. J. Adv. Res. 4(1). 47–52. doi: https://doi.org/10.46966/msjar.v4i1.108.

Kalil H., Maher S., Bose T., & Bayachou M. 2018. Manganese oxide/hemin-functionalized graphene as a platform for peroxynitrite sensing. J. Electrochem. Soc. 165(12). G3133–G3140. doi: https://doi.org/10.1149/2.0221812jes.

Nayak S.K., Mohanty S., & Nayak S.K. 2019. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application. SN Appl. Sci. 1(4). 1–15. doi: https://doi.org/10.1007/s42452-019-0346-2.

Ackermann A.C., Fischer M., Wick A., Carosella S., Fox B.L., & Middendorf P. 2022. Mechanical, thermal and electrical properties of epoxy nanocomposites with amine-functionalized reduced graphene oxide via plasma treatment. J. Compos. Sci. 6(6). doi: https://doi.org/10.3390/jcs6060153.

Oh J., Oh K., Kim C., & Hong C. 2004. Design of radar absorbing structures using glass / epoxy composite containing carbon black in X-band frequency ranges. 35. 49–56. doi: https://doi.org/10.1016/j.compositesb.2003.08.011.

Shinde D.D., Babu V., & Khandal S. V. 2022. A review on types of radar absorbing materials. Shanlax Int. J. Manag. 9. 122–127. doi: https://doi.org/10.34293/management.v9is1-mar.4901.

Karami M.R., Jaleh B., Eslamipanah M., Nasri, A., & Rhee K.Y. 2023. Design and optimization of a TiO2/RGO-supported epoxy multilayer microwave absorber by the modified local best particle swarm optimization algorithm. Nanotechnol. Rev. 12(1). doi: https://doi.org/10.1515/ntrev-2023-0121.

Downloads

Published

2024-12-31

How to Cite

Fahri, M., Bolilanga, P. I. W., Gunaryo, G., Stiawan, E., & Kurniadi, T. (2024). Exploring the Potential of Carbon-based Radar Absorbing Material Innovations. Indonesian Journal of Chemical Studies, 3(2), 72–81. https://doi.org/10.55749/ijcs.v3i2.56

Most read articles by the same author(s)