Radar Absorber Composite Graphene Oxide/Magnetite/Zinc Oxide in Polypyrole Matrix

Authors

  • Allodya Nadra Xaviera Department of Chemistry, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia
  • Vania Agatha Nareswari Department of Chemistry, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia
  • Dea Dwi Ananda Department of Chemistry, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia
  • Hazzha Azzahra Department of Chemistry, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia
  • Thessa Ocatvia Joyetta Tarigan Department of Chemistry, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia
  • Tiara Rizki Yulita Department of Chemistry, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia
  • Nugroho Adi Sasongko Research Center For Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST Prof. BJ Habibie, Building 720 Puspiptek Area, South Tangerang, Banten 15314, Indonesia; Energy Security Graduate Program, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia; Murdoch University, 90 South St, Murdoch Western Australia 6150, Australia
  • Rahmat Basuki Department of Chemistry, The Republic of Indonesia Defense University, Kawasan IPSC Sentul, Bogor 16810, Indonesia https://orcid.org/0000-0002-3117-2740

DOI:

https://doi.org/10.55749/ss.v1i1.80

Keywords:

Carbon composite, Fe₃O₄/ZnO, Polypirrol, Radar absorbing material, Stealth technology

Abstract

The development of stealth technology in modern defense systems demands superior radar absorbing material (RAM) innovation. This study aims to synthesize and characterize Fe₃O₄/ZnO modified carbon-based RAM composites in a polypyrrole (PPy) matrix using graphite oxide (GiO). The composites were synthesized via a modified Hummer method as well as a one-pot technique, and characterized using FTIR, XRD, SEM-EDX, and VNA. The FTIR characterization results showed that the C=C peak decreased in intensity after the oxidation process, indicating the breaking of the aromatic double bond and the formation of new functional groups such as C–O and C=O. This change was detected in both pGiO and kGiO samples. XRD data showed a shift in the main peaks to 2θ = 11.25° and 42.20° for pGiO and 2θ = 11.56° and 42.40° for GiO-k, respectively. This shift indicates the formation of a more amorphous graphite oxide structure compared to the original graphite.The results show that GiO/Fe₃O₄/ZnO has the highest reflection loss value of -9.20 dB at 10.91 GHz (GiO-p/Fe₃O₄/ZnO 66%-PPy) with an absorption value of 88.03% and rGO/Fe₃O₄/ZnO/PPy the highest RL value reached -7.51 dB at 11.57 GHz (rGO-k/Fe₃O₄/ZnO 66%-PPy) with an absorption value of 82.21%. This research proves that Fe3O4/ZnO modified carbon-based composites in a polypyrrole matrix have high potential as an efficient radar absorbing material and can support the needs of domestic defense technology.

References

[1] Abharya, A. & Gholizadeh, A. 2021. Synthesis of a Fe3O4-rGO-ZnO-Catalyzed photo-fenton system with enhanced photocatalytic performance. Ceram. Int. 47(9). 12010–12019. Doi: https://doi.org/10.1016/j.ceramint.2021.01.044

[2] Admojo, L. & Setyawan, B. 2018. potensi pemanfaatan lignoselulosa dari biomasa kayu karet (Hevea Brasisiliensis Muell Arg.). Warta Perkaretan. 37(1). 39–50. Doi: https://doi.org/10.22302/ppk.wp.v37i1.529

[3] Aini, N.N., Widyastuti, W. & Fajarin, R. 2016. pengaruh jenis polimer terhadap reflection loss pada polymer matrix composite (PMC) barium heksaferrit sebagai radar absorbing material (RAM). Jurnal Teknik ITS. 5(2). F125-F129. Doi: https://doi.org/10.12962/j23373539.v5i2.17710

[4] Atay, H.Y. 2016. A comparison on radar absorbing properties of nano and micro-scale barium hexaferrite powders reinforced polymeric composites. Mugla Journal of Science and Technology. 2(1). 88–92. Doi: https://doi.org/10.22531/muglajsci.269979

[5] Atay, H.Y. & Liiçin, Ö. 2020. manufacturing radar-absorbing composite materials by using magnetic co-doped zinc oxide particles synthesized by sol-gel. J. Compos. Mater. 54(26). 4059–4066. Doi: https://doi.org/10.1177/0021998320927754

[6] Batool, A., Kanwal, F., Imran, M., Jamil, T. & Siddiqi, S.A. 2012. Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth. Met. 161(23–24). 2753–2758.

Doi: https://doi.org/10.1016/j.synthmet.2011.10.016

[7] Baumgartner, J., Dey, A., Bomans, P.H., Le Coadou, C., Fratzl, P., Sommerdijk, N.A. and Faivre, D. 2013. Nucleation and growth of magnetite from solution. Nat. Mater. 12(4). 310-314. Doi: http://dx.doi.org/10.1038/nmat3558

[8] Bhuvaneswari, S., Pratheeksha, P.M., Anandan, S., Rangappa, D., Gopalan, R. and Rao, T.N. 2014. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Phys. Chem. Chem. Phys. 16(11). 5284-5294. Doi: https://doi.org/10.1039/C3CP54778G

[9] Bolilanga, P.I.W., Basuki, R., Apriliyanto, Y.B., Prasojo, A.E., Lazuardy, A., Anitasari, R., Putri, R., Sasongko, N.A. and Santiko, A.B., Immobilization of Cerium (IV) oxide onto reduced graphene oxide in epoxy resin matrix as radar absorbing composite for x-band region. Indones. J. Chem. 24(6). 1688-1700. Doi: http://dx.doi.org/10.22146/ijc.94404

[10] Chakradhary, V.K., Juneja, S. & Akhtar, M.J. 2020. Correlation between EMI shielding and reflection loss mechanism for carbon nanofiber/epoxy nanocomposite. Mater. Today Commun. 25. 101386. Doi: https://doi.org/10.1016/j.mtcomm.2020.101386

[11] Chen, X., Qu, Z., Liu, Z. and Ren, G. 2022. Mechanism of oxidization of graphite to graphene oxide by the hummers method. ACS Omega. 7(27). 23503-23510. Doi: https://doi.org/10.1021/Acsomega.2c01963

[12] Chieng, B.W., Ibrahim, N.A., Wan Yunus, W.M.Z. and Hussein, M.Z. 2013. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers. 6(1). 93-104. Doi: https://doi.org/10.3390/polym6010093

[13] Chieng, B.W., Ibrahim, N.A., Wan Yunus, W.M.Z., Hussein, M.Z., Then, Y.Y. and Loo, Y.Y. 2014. Effects of graphene nanoplatelets and reduced graphene oxide on poly (lactic acid) and plasticized poly (lactic acid): A comparative study. Polymers. 6(8). 2232-2246. Doi: https://doi.org/10.3390/polym6082232

[14] Dawn, R., Zzaman, M., Faizal, F., Kiran, C., Kumari, A., Shahid, R., Panatarani, C., Joni, I.M., Verma, V.K., Sahoo, S.K. and Amemiya, K. 2022. Origin of magnetization in silica-coated Fe3O4 nanoparticles revealed by soft X-ray magnetic circular dichroism. Brazi. J. Phys. 52(3). 99. Doi: http://dx.doi.org/10.1007/s13538-022-01102-x

[15] Du, Y., Pei, M., He, Y., Yu, F., Guo, W. & Wang, L. 2014. Preparation, characterization and application of magnetic Fe3O4-CS for the adsorption of orange I from aqueous solutions. PloS one. 9(10). e108647. Doi: https://doi.org/10.1371/journal.pone.0108647

[16] Elmahaishi, M.F., Azis, R.A.S., Ismail, I., Matori, K.A. & Muhammad, F.D., 2024. Influence of particle size on the magnetic and microwave absorption properties of magnetite via mechano-mechanical methods for micro-nano-spheres. Nano-Struct. 39. 101207. Doi: https://doi.org/10.1016/J.Nanoso.2024.101207

[17] Fischer, D., Zagorac, D. & Schön, J.C. 2023. Fundamental insight into the formation of the zinc oxide crystal structure. Thin Solid Films. 782. 140017. Doi: https://doi.org/10.1016/j.tsf.2023.140017

[18] Ganash, E.A., Al-Jabarti, G.A. & Altuwirqi, R.M. 2019. The synthesis of carbon-based nanomaterials by pulsed laser ablation in water. Mater. Res. Express. 7(1). 15002. Doi: http://dx.doi.org/10.1088/2053-1591/ab572b

[19] Hanifah, N., Hidayat, N., Yogihati, C.I., Adi, W.A., Amrillah, T., Abd Aziz, M.S. & Taufiq, A. 2024. A novel Fe3O4/ZnO/PANI/rGO nanohybrid material for radar wave absorbing. Mater. Chem. Phys. 317. 129169. Doi: https://doi.org/10.1016/j.matchemphys.2024.129169

[20] Ickecan, D., Zan, R. And Nezir, S. 2017. Eco-friendly synthesis and characterization of reduced graphene oxide. J. Phys. Conf. Ser. 12027. Doi: http://dx.doi.org/10.1088/1742-6596/902/1/012027

[21] Jayswal, S. & Moirangthem, R.S. 2018. Thermal decomposition route to synthesize ZnO nanoparticles for photocatalytic application. AIP Conf. Proc. 2009(1). 020023. Doi: https://doi.org/10.1063/1.5052092

[22] Johan, A., Adi, W.A., Arsyad, F.S., Ramlan, R. & Setiabudidaya, D. 2023. Comparative study of reflection loss of microwave absorbing materials from single phase Co1-xZnxFe2O4 and CoFe2O4/LaFeO3 composites. AIP Conf. Proc. 2913(1). 050005. Doi: https://doi.org/10.1063/5.0171720

[23] Kim, S.H., Lee, S.Y., Zhang, Y., Park, S.J. & Gu, J. 2023. Carbon‐based radar absorbing materials toward stealth technologies. Adv. Sci. 10(32). 2303104. Doi: Https://Doi.Org/10.1002/Advs.202303104

[24] Shalaby, A., Nihtianova, D., Markov, P., Staneva, A.D., Iordanova, R.S. & Dimitriev, Y.B., 2015. Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg. Chem. Commun. 47(1). 291-295.

[25] Li, H., Yang, S., Zhao, Y., Tan, T., Wang, X. & Bakenov, Z. 2019. Synthesis of ZnO/Polypyrrole nanoring composite as high‐performance anode materials for lithium ion batteries. J. Nanomater. 2019(1). 4702849. Doi: https://doi.org/10.1155/2019/4702849

[26] Lia, Y., Zhao, B., Fan, S., Liang, L., Zhou, Y., Wang, R., Guo, X., Fan, B. & Zhang, R., 2019. ZnO amounts-dependent electromagnetic wave absorption capabilities of Ni/ZnO composite microspheres. J. Mater. Sci.: Mater. Electron. 30(22). 19966-19976. Doi: https://doi.org/10.1007/s10854-019-02363-0

[27] Lv, H., Li, Y., Jia, Z., Wang, L., Guo, X., Zhao, B. & Zhang, R., 2020. Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos. B: Eng. 196. 108122. Doi: https://doi.org/10.1016/j.compositesb.2020.108122

[28] Mahadevi, V., Veeresh, S., Vijaykumr, B.T., Kolhar, P., Basavaraj, B. & Sannakki, B. 2024. Situ synthesis and characterization of polypyrrole/ZnO Nanocomposites for optical and photocatalytic activity. IOP Conf. Ser. Mater. Sci. Eng. 1300(1). 012022. Doi: http://dx.doi.org/10.1088/1757-899X/1300/1/012022

[29] Malere, C.P., Donati, B., Eras, N., Silva, V.A. & Lona, L.F. 2022. Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite. J. Appl. Polym. Sci. 139(17). 52023. Doi: https://doi.org/10.1088/1757-899X/1300/1/012022

[30] Mashkoor, F., Shoeb, M., Khan, M.N. & Jeong, C. 2024. Facile synthesis of Polypyrrole-decorated RGO-CuS nanocomposite for efficient nickel removal from wastewater. Polymers. 16(22). 3138. Doi: https://doi.org/10.3390/polym16223138

[31] Meng, X., Liu, Y., Han, G., Yang, W. & Yu, Y. 2020. Three-dimensional (Fe3O4/ZnO)@ C Double-core@ shell porous nanocomposites with enhanced broadband microwave absorption. Carbon. 162. 356-364. Doi: https://doi.org/10.1016/j.carbon.2020.02.035

[32] Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K. & He, D. 2009. Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J. Phys. D: Appl. Phys. 42(5). 055004. Doi: https://doi.org/10.1088/0022-3727/42/5/055004.

[33] Ozel, E., Tuncolu, I.G., Aciksari, C. & Suvaci, E. 2016. Effect of precursor type on zinc oxide formation and morphology development during hydrothermal synthesis. Hittite J. Sci. Eng. 3(2). 73-80. Doi: https://doi.org/10.17350/hjse19030000034

[34] Pattanaik, B., & Chauhan, A. 2023. A study of stealth technology. Mater. Today Proc. 81. 543–546. Doi: https://doi.org/10.1016/j.matpr.2021.03.705

[35] Pebrina, D. & Astuti, A. 2023. Sintesis dan karakterisasi sifat optik nanokomposit Fe3O4@ZnO:C. Jurnal Fisika Unand. 12(2). 298–303. Doi: https://doi.org/10.25077/jfu.12.2.297-302.2023

[36] Peng, W., Han, G., Huang, Y., Cao, Y. & Song, S., 2018. Insight the effect of crystallinity of natural graphite on the electrochemical performance of reduced graphene oxide. Results Phys. 11. 131-137. Doi: https://doi.org/10.1016/j.rinp.2018.08.055

[37] Poplavko, Y.M. 2019. Dielectrics. Electronic Materials. 287-408. Doi: https://doi.org/10.1016/b978-0-12-815780-0.00007-4

[38] Pourbeyram, S. & Kheyri, P. 2018. Graphene/Polypyrrole nanofiber prepared by simple one step green method for electrochemical supercapacitors. Synth. Met. 238. 22–27. Doi: https://doi.org/10.1016/j.synthmet.2018.02.002

[39] Rahmayanti, M. 2020. Sintesis dan karakterisasi magnetit (Fe3O4): studi komparasi metode konvensional dan metode sonokimia. Al Ulum: Jurnal Sains Dan Teknologi. 6(1). 26-31. Doi: http://dx.doi.org/10.31602/ajst.v6i1.3659s

[40] Rajan S, A., Khan, A., Asrar, S., Raza, H., Das, R.K. & Sahu, N.K. 2019. Synthesis of ZnO/Fe3O4/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus. IET Nanobiotechnology. 13(7). 682-687. Doi: https://doi.org/10.1049/iet-nbt.2018.5330

[41] Ruiz-Perez, F., López-Estrada, S.M., Tolentino-Hernández, R.V. & Caballero-Briones, F. 2022. Carbon-based radar absorbing materials: A critical review. J. Sci.: Adv. Mater. Devices. 7(3). 100454. Doi: https://doi.org/10.1016/j.jsamd.2022.100454

[42] Safitri, R.F., & Kusumawati, D.H. 2020. Aplikasi bahan komposit berbasis reduced graphene oxide (rGO). Inovasi Fisika Indonesia. 9(2). 93-104. Doi: https://doi.org/10.26740/ifi.v9n2.p93-104

[43] Salimi, N., Mohammadi-Manesh, E., Ahmadvand, N., Danafar, H. & Ghiasvand, S. 2024. Curcumin-loaded by Fe3O4/GO and Fe3O4/ZnO/GO nanocomposites for drug delivery applications: synthesis, characterization and anticancer assessment. J. Inorg. Organomet. Polym. Mater. 34(3). 1256-1271.s Doi: https://doi.org/10.1007/s10904-023-02883-7

[44] Satria, N. & Putra, A. 2017. Synthesis and characterization of cocoa pods waste carbon for Radar Absorber Material. In 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). IEEE. 1532-1535. Doi: https://doi.org/10.1109/piers-fall.2017.8293375

[45] Sawitri, E., Azmiyawati, C. & Siahaan, P. 2018). Silica magnetite adsorbent: effect of drying temperature of silica sol gel on magnetite core structure. Jurnal Kimia Sains Dan Aplikasi. 21(3). 149–154. Doi: https://doi.org/10.14710/jksa.21.3.149-154

[46] Shanmugam, S. & Nanjan, S. 2019. In-situ conversion of rGO from graphene oxide based on solar mediated enhanced characterization properties. Наносистемы: Физика, Химия, Математика. 10(5). 579–584. Doi: https://doi.org/10.17586/2220-8054-2019-10-5-579-584

[47] Sudhakar, Y.N., Vindyashree, Smitha, V., Prashanthi, Poornesh, P., Ashok, R. and Selvakumar, M. 2015. Conversion of pencil graphite to graphene/polypyrrole nanofiber composite electrodes and its doping effect on the supercapacitive properties. Polym. Eng. Sci. 55(9). 2118-2126. Doi: https://doi.org/10.1002/pen.24053

[48] Sujiono, E.H., Zabrian, D., Dahlan, M.Y., Amin, B.D. & Agus, J., 2020. Graphene oxide based coconut shell waste: synthesis by modified Hummers method and scharacterization. Heliyon. 6(8). e04568. Doi: https://doi.org/10.1016/j.heliyon.2020.e04568

[49] Sun, W.F. & Sun, P.B. 2022. Electrical insulation and radar-wave absorption performances of nanoferrite/liquid-silicone-rubber composites. Int. J. Mol. Sci. 23(18). 10424. Doi: https://doi.org/10.3390/ijms231810424

[50] Santamaría-Juárez, G., Gómez-Barojas, E., Quiroga-González, E., Sánchez-Mora, E., Quintana-Ruiz, M. and Santamaría-Juárez, J.D. 2020. Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Mater. Res. Express. 6(12). 125631. Doi: https://doi.org/10.1088/2053-1591/ab4cbf

[51] Syihabuddin, D.M. & Munasir, M. 2024. Green synthesis nanopartikel Fe3O4 dengan bioreduktor ekstrak daun mimba (Azadirachta indica): aplikasi sebagai material fotokatalis degradasi methylene blue. Inovasi Fisika Indonesia. 13(3). 118–123. Doi: https://doi.org/10.26740/ifi.v13n3.p118-123

[52] Taryana, Y., Manaf, A., Sudrajat, N. & Wahyu, Y. 2019. Material penyerap gelombang elektromagnetik jangkauan frekuensi radar. Jurnal Keramik dan Gelas Indonesia. 28(1). 1-29.

[53] Taufantri, Y., Irdhawati, I. & Asih, I. 2016. Sintesis dan karakterisasi grafena dengan metode reduksi grafit oksida menggunakan pereduksi Zn. Jurnal Kimia VALENSI. 2(1). 17–23. Doi: http://dx.doi.org/10.15408/jkv.v2i1.2233

[54] Tong, G., Du, F., Wu, W., Wu, R., Liu, F. & Liang, Y. 2013. Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process. J. Mater. Chem. B. 1(20). 2647-2657. Doi: https://doi.org/10.1039/c3tb20229a

[55] Usvanda, L.N. & Zainuri, M. 2016. Sintesis dan karakterisasi lapisan radar absorbing material (RAM) berbahan dasar bam/pani pada rentang gelombang x-band dengan variasi ketebalan. Jurnal Sains Dan Seni ITS. 5(2). 129237. Doi: http://dx.doi.org/10.12962/j23373520.v5i2.17900

[56] Visca, R., Dewi, M.N., Liviani, A. & Satriawan, B.D. 2022. Characterization of FTIR in graphite from palm oil waste with ferric chloride catalyst. Interdisciplinary Social Studies. 1(11). 1355-1358. Doi: https://doi.org/10.55324/iss.v1i11.276

[57] Wang, Y., Yang, P., Zheng, L., Shi, X. & Zheng, H. 2020. Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review. Energy Storage Mater. 26. 349-370. Doi: https://doi.org/10.1016/j.ensm.2019.11.006

[58] Yogasundari, M. & Manikandan, A. 2020. Synthesis, structural, morphological and magnetic properties of Fe3O4/ZnO nanocomposites by co-precipitation method. Malaya Journal of Matematik. 1(2). 2264-2266. Doi: https://doi.org/10.26637/MJM0S20/0582

[59] Xu, C., Shi, X., Ji, A., Shi, L., Zhou, C. & Cui, Y. 2015. Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PloS one. 10(12). e0144842. Doi: https://doi.org/10.1371/journal.pone.0144842

[60] Xue, J., Sun, Q., Zhang, Y., Mao, W., Li, F. and Yin, C. 2020. Preparation of a polypyrrole/graphene oxide composite electrode by electrochemical codeposition for capacitor deionization. ACS omega. 5(19). 10995-11004. Doi: https://doi.org/10.1021/acsomega.0c00817

[61] Yang, Z., Sheng, Q., Zhang, S., Zheng, X. & Zheng, J. 2017. One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchim. Acta. 184(7). 2219-2226. Doi: https://doi.org/10.1007/s00604-017-2197-0

[62] Yin, P., Deng, Y., Zhang, L., Huang, J., Li, H., Li, Y., Qi, Y. & Tao, Y. 2018. The microwave absorbing properties of ZnO/Fe3O4/paraffin composites in low frequency band. Mater. Res. Express. 5(2). 026109. Doi: https://doi.org/10.1088/2053-1591/aaae58s

[63] Putra, A., Yohandri, Z., Sumantyo, J.T.S. & Sanjaya, H. 2019. A low-cost radar absorber based on palm shell active carbon for anechoic chamber. Int. J. Adv. Sci. Eng. Inf. Technol. 9. 1976-1981. Doi: https://doi.org/10.18517/ijaseit.9.6.9961

[64] Zhou, A., Yu, T., Liang, X. & Yin, S. 2023. H2O2-free strategy derived from Hummers method for preparing graphene oxide with high oxidation degree. FlatChem. 38. 100487. Doi: https://doi.org/10.1016/j.flatc.2023.100487

[65] Zulpadrianto, Z., Yohandri, Y. & Putra, A. 2018. Development radar absorber material using rice husk carbon for anechoic chamber application. IOP Conf. Ser.: Mater. Sci. Eng. 12002. Doi: https://doi.org/10.1088/1757-899x/335/1/012002

Downloads

Published

2025-06-30