Radar Absorber Composite Graphene Oxide/Magnetite/Zinc Oxide in Polypyrole Matrix
DOI:
https://doi.org/10.55749/ss.v1i1.80Keywords:
Carbon composite, Fe₃O₄/ZnO, Polypirrol, Radar absorbing material, Stealth technologyAbstract
The development of stealth technology in modern defense systems demands superior radar absorbing material (RAM) innovation. This study aims to synthesize and characterize Fe₃O₄/ZnO modified carbon-based RAM composites in a polypyrrole (PPy) matrix using graphite oxide (GiO). The composites were synthesized via a modified Hummer method as well as a one-pot technique, and characterized using FTIR, XRD, SEM-EDX, and VNA. The FTIR characterization results showed that the C=C peak decreased in intensity after the oxidation process, indicating the breaking of the aromatic double bond and the formation of new functional groups such as C–O and C=O. This change was detected in both pGiO and kGiO samples. XRD data showed a shift in the main peaks to 2θ = 11.25° and 42.20° for pGiO and 2θ = 11.56° and 42.40° for GiO-k, respectively. This shift indicates the formation of a more amorphous graphite oxide structure compared to the original graphite.The results show that GiO/Fe₃O₄/ZnO has the highest reflection loss value of -9.20 dB at 10.91 GHz (GiO-p/Fe₃O₄/ZnO 66%-PPy) with an absorption value of 88.03% and rGO/Fe₃O₄/ZnO/PPy the highest RL value reached -7.51 dB at 11.57 GHz (rGO-k/Fe₃O₄/ZnO 66%-PPy) with an absorption value of 82.21%. This research proves that Fe3O4/ZnO modified carbon-based composites in a polypyrrole matrix have high potential as an efficient radar absorbing material and can support the needs of domestic defense technology.
References
[1] Abharya, A. & Gholizadeh, A. 2021. Synthesis of a Fe3O4-rGO-ZnO-Catalyzed photo-fenton system with enhanced photocatalytic performance. Ceram. Int. 47(9). 12010–12019. Doi: https://doi.org/10.1016/j.ceramint.2021.01.044
[2] Admojo, L. & Setyawan, B. 2018. potensi pemanfaatan lignoselulosa dari biomasa kayu karet (Hevea Brasisiliensis Muell Arg.). Warta Perkaretan. 37(1). 39–50. Doi: https://doi.org/10.22302/ppk.wp.v37i1.529
[3] Aini, N.N., Widyastuti, W. & Fajarin, R. 2016. pengaruh jenis polimer terhadap reflection loss pada polymer matrix composite (PMC) barium heksaferrit sebagai radar absorbing material (RAM). Jurnal Teknik ITS. 5(2). F125-F129. Doi: https://doi.org/10.12962/j23373539.v5i2.17710
[4] Atay, H.Y. 2016. A comparison on radar absorbing properties of nano and micro-scale barium hexaferrite powders reinforced polymeric composites. Mugla Journal of Science and Technology. 2(1). 88–92. Doi: https://doi.org/10.22531/muglajsci.269979
[5] Atay, H.Y. & Liiçin, Ö. 2020. manufacturing radar-absorbing composite materials by using magnetic co-doped zinc oxide particles synthesized by sol-gel. J. Compos. Mater. 54(26). 4059–4066. Doi: https://doi.org/10.1177/0021998320927754
[6] Batool, A., Kanwal, F., Imran, M., Jamil, T. & Siddiqi, S.A. 2012. Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth. Met. 161(23–24). 2753–2758.
Doi: https://doi.org/10.1016/j.synthmet.2011.10.016
[7] Baumgartner, J., Dey, A., Bomans, P.H., Le Coadou, C., Fratzl, P., Sommerdijk, N.A. and Faivre, D. 2013. Nucleation and growth of magnetite from solution. Nat. Mater. 12(4). 310-314. Doi: http://dx.doi.org/10.1038/nmat3558
[8] Bhuvaneswari, S., Pratheeksha, P.M., Anandan, S., Rangappa, D., Gopalan, R. and Rao, T.N. 2014. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Phys. Chem. Chem. Phys. 16(11). 5284-5294. Doi: https://doi.org/10.1039/C3CP54778G
[9] Bolilanga, P.I.W., Basuki, R., Apriliyanto, Y.B., Prasojo, A.E., Lazuardy, A., Anitasari, R., Putri, R., Sasongko, N.A. and Santiko, A.B., Immobilization of Cerium (IV) oxide onto reduced graphene oxide in epoxy resin matrix as radar absorbing composite for x-band region. Indones. J. Chem. 24(6). 1688-1700. Doi: http://dx.doi.org/10.22146/ijc.94404
[10] Chakradhary, V.K., Juneja, S. & Akhtar, M.J. 2020. Correlation between EMI shielding and reflection loss mechanism for carbon nanofiber/epoxy nanocomposite. Mater. Today Commun. 25. 101386. Doi: https://doi.org/10.1016/j.mtcomm.2020.101386
[11] Chen, X., Qu, Z., Liu, Z. and Ren, G. 2022. Mechanism of oxidization of graphite to graphene oxide by the hummers method. ACS Omega. 7(27). 23503-23510. Doi: https://doi.org/10.1021/Acsomega.2c01963
[12] Chieng, B.W., Ibrahim, N.A., Wan Yunus, W.M.Z. and Hussein, M.Z. 2013. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers. 6(1). 93-104. Doi: https://doi.org/10.3390/polym6010093
[13] Chieng, B.W., Ibrahim, N.A., Wan Yunus, W.M.Z., Hussein, M.Z., Then, Y.Y. and Loo, Y.Y. 2014. Effects of graphene nanoplatelets and reduced graphene oxide on poly (lactic acid) and plasticized poly (lactic acid): A comparative study. Polymers. 6(8). 2232-2246. Doi: https://doi.org/10.3390/polym6082232
[14] Dawn, R., Zzaman, M., Faizal, F., Kiran, C., Kumari, A., Shahid, R., Panatarani, C., Joni, I.M., Verma, V.K., Sahoo, S.K. and Amemiya, K. 2022. Origin of magnetization in silica-coated Fe3O4 nanoparticles revealed by soft X-ray magnetic circular dichroism. Brazi. J. Phys. 52(3). 99. Doi: http://dx.doi.org/10.1007/s13538-022-01102-x
[15] Du, Y., Pei, M., He, Y., Yu, F., Guo, W. & Wang, L. 2014. Preparation, characterization and application of magnetic Fe3O4-CS for the adsorption of orange I from aqueous solutions. PloS one. 9(10). e108647. Doi: https://doi.org/10.1371/journal.pone.0108647
[16] Elmahaishi, M.F., Azis, R.A.S., Ismail, I., Matori, K.A. & Muhammad, F.D., 2024. Influence of particle size on the magnetic and microwave absorption properties of magnetite via mechano-mechanical methods for micro-nano-spheres. Nano-Struct. 39. 101207. Doi: https://doi.org/10.1016/J.Nanoso.2024.101207
[17] Fischer, D., Zagorac, D. & Schön, J.C. 2023. Fundamental insight into the formation of the zinc oxide crystal structure. Thin Solid Films. 782. 140017. Doi: https://doi.org/10.1016/j.tsf.2023.140017
[18] Ganash, E.A., Al-Jabarti, G.A. & Altuwirqi, R.M. 2019. The synthesis of carbon-based nanomaterials by pulsed laser ablation in water. Mater. Res. Express. 7(1). 15002. Doi: http://dx.doi.org/10.1088/2053-1591/ab572b
[19] Hanifah, N., Hidayat, N., Yogihati, C.I., Adi, W.A., Amrillah, T., Abd Aziz, M.S. & Taufiq, A. 2024. A novel Fe3O4/ZnO/PANI/rGO nanohybrid material for radar wave absorbing. Mater. Chem. Phys. 317. 129169. Doi: https://doi.org/10.1016/j.matchemphys.2024.129169
[20] Ickecan, D., Zan, R. And Nezir, S. 2017. Eco-friendly synthesis and characterization of reduced graphene oxide. J. Phys. Conf. Ser. 12027. Doi: http://dx.doi.org/10.1088/1742-6596/902/1/012027
[21] Jayswal, S. & Moirangthem, R.S. 2018. Thermal decomposition route to synthesize ZnO nanoparticles for photocatalytic application. AIP Conf. Proc. 2009(1). 020023. Doi: https://doi.org/10.1063/1.5052092
[22] Johan, A., Adi, W.A., Arsyad, F.S., Ramlan, R. & Setiabudidaya, D. 2023. Comparative study of reflection loss of microwave absorbing materials from single phase Co1-xZnxFe2O4 and CoFe2O4/LaFeO3 composites. AIP Conf. Proc. 2913(1). 050005. Doi: https://doi.org/10.1063/5.0171720
[23] Kim, S.H., Lee, S.Y., Zhang, Y., Park, S.J. & Gu, J. 2023. Carbon‐based radar absorbing materials toward stealth technologies. Adv. Sci. 10(32). 2303104. Doi: Https://Doi.Org/10.1002/Advs.202303104
[24] Shalaby, A., Nihtianova, D., Markov, P., Staneva, A.D., Iordanova, R.S. & Dimitriev, Y.B., 2015. Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg. Chem. Commun. 47(1). 291-295.
[25] Li, H., Yang, S., Zhao, Y., Tan, T., Wang, X. & Bakenov, Z. 2019. Synthesis of ZnO/Polypyrrole nanoring composite as high‐performance anode materials for lithium ion batteries. J. Nanomater. 2019(1). 4702849. Doi: https://doi.org/10.1155/2019/4702849
[26] Lia, Y., Zhao, B., Fan, S., Liang, L., Zhou, Y., Wang, R., Guo, X., Fan, B. & Zhang, R., 2019. ZnO amounts-dependent electromagnetic wave absorption capabilities of Ni/ZnO composite microspheres. J. Mater. Sci.: Mater. Electron. 30(22). 19966-19976. Doi: https://doi.org/10.1007/s10854-019-02363-0
[27] Lv, H., Li, Y., Jia, Z., Wang, L., Guo, X., Zhao, B. & Zhang, R., 2020. Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos. B: Eng. 196. 108122. Doi: https://doi.org/10.1016/j.compositesb.2020.108122
[28] Mahadevi, V., Veeresh, S., Vijaykumr, B.T., Kolhar, P., Basavaraj, B. & Sannakki, B. 2024. Situ synthesis and characterization of polypyrrole/ZnO Nanocomposites for optical and photocatalytic activity. IOP Conf. Ser. Mater. Sci. Eng. 1300(1). 012022. Doi: http://dx.doi.org/10.1088/1757-899X/1300/1/012022
[29] Malere, C.P., Donati, B., Eras, N., Silva, V.A. & Lona, L.F. 2022. Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite. J. Appl. Polym. Sci. 139(17). 52023. Doi: https://doi.org/10.1088/1757-899X/1300/1/012022
[30] Mashkoor, F., Shoeb, M., Khan, M.N. & Jeong, C. 2024. Facile synthesis of Polypyrrole-decorated RGO-CuS nanocomposite for efficient nickel removal from wastewater. Polymers. 16(22). 3138. Doi: https://doi.org/10.3390/polym16223138
[31] Meng, X., Liu, Y., Han, G., Yang, W. & Yu, Y. 2020. Three-dimensional (Fe3O4/ZnO)@ C Double-core@ shell porous nanocomposites with enhanced broadband microwave absorption. Carbon. 162. 356-364. Doi: https://doi.org/10.1016/j.carbon.2020.02.035
[32] Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K. & He, D. 2009. Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J. Phys. D: Appl. Phys. 42(5). 055004. Doi: https://doi.org/10.1088/0022-3727/42/5/055004.
[33] Ozel, E., Tuncolu, I.G., Aciksari, C. & Suvaci, E. 2016. Effect of precursor type on zinc oxide formation and morphology development during hydrothermal synthesis. Hittite J. Sci. Eng. 3(2). 73-80. Doi: https://doi.org/10.17350/hjse19030000034
[34] Pattanaik, B., & Chauhan, A. 2023. A study of stealth technology. Mater. Today Proc. 81. 543–546. Doi: https://doi.org/10.1016/j.matpr.2021.03.705
[35] Pebrina, D. & Astuti, A. 2023. Sintesis dan karakterisasi sifat optik nanokomposit Fe3O4@ZnO:C. Jurnal Fisika Unand. 12(2). 298–303. Doi: https://doi.org/10.25077/jfu.12.2.297-302.2023
[36] Peng, W., Han, G., Huang, Y., Cao, Y. & Song, S., 2018. Insight the effect of crystallinity of natural graphite on the electrochemical performance of reduced graphene oxide. Results Phys. 11. 131-137. Doi: https://doi.org/10.1016/j.rinp.2018.08.055
[37] Poplavko, Y.M. 2019. Dielectrics. Electronic Materials. 287-408. Doi: https://doi.org/10.1016/b978-0-12-815780-0.00007-4
[38] Pourbeyram, S. & Kheyri, P. 2018. Graphene/Polypyrrole nanofiber prepared by simple one step green method for electrochemical supercapacitors. Synth. Met. 238. 22–27. Doi: https://doi.org/10.1016/j.synthmet.2018.02.002
[39] Rahmayanti, M. 2020. Sintesis dan karakterisasi magnetit (Fe3O4): studi komparasi metode konvensional dan metode sonokimia. Al Ulum: Jurnal Sains Dan Teknologi. 6(1). 26-31. Doi: http://dx.doi.org/10.31602/ajst.v6i1.3659s
[40] Rajan S, A., Khan, A., Asrar, S., Raza, H., Das, R.K. & Sahu, N.K. 2019. Synthesis of ZnO/Fe3O4/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus. IET Nanobiotechnology. 13(7). 682-687. Doi: https://doi.org/10.1049/iet-nbt.2018.5330
[41] Ruiz-Perez, F., López-Estrada, S.M., Tolentino-Hernández, R.V. & Caballero-Briones, F. 2022. Carbon-based radar absorbing materials: A critical review. J. Sci.: Adv. Mater. Devices. 7(3). 100454. Doi: https://doi.org/10.1016/j.jsamd.2022.100454
[42] Safitri, R.F., & Kusumawati, D.H. 2020. Aplikasi bahan komposit berbasis reduced graphene oxide (rGO). Inovasi Fisika Indonesia. 9(2). 93-104. Doi: https://doi.org/10.26740/ifi.v9n2.p93-104
[43] Salimi, N., Mohammadi-Manesh, E., Ahmadvand, N., Danafar, H. & Ghiasvand, S. 2024. Curcumin-loaded by Fe3O4/GO and Fe3O4/ZnO/GO nanocomposites for drug delivery applications: synthesis, characterization and anticancer assessment. J. Inorg. Organomet. Polym. Mater. 34(3). 1256-1271.s Doi: https://doi.org/10.1007/s10904-023-02883-7
[44] Satria, N. & Putra, A. 2017. Synthesis and characterization of cocoa pods waste carbon for Radar Absorber Material. In 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). IEEE. 1532-1535. Doi: https://doi.org/10.1109/piers-fall.2017.8293375
[45] Sawitri, E., Azmiyawati, C. & Siahaan, P. 2018). Silica magnetite adsorbent: effect of drying temperature of silica sol gel on magnetite core structure. Jurnal Kimia Sains Dan Aplikasi. 21(3). 149–154. Doi: https://doi.org/10.14710/jksa.21.3.149-154
[46] Shanmugam, S. & Nanjan, S. 2019. In-situ conversion of rGO from graphene oxide based on solar mediated enhanced characterization properties. Наносистемы: Физика, Химия, Математика. 10(5). 579–584. Doi: https://doi.org/10.17586/2220-8054-2019-10-5-579-584
[47] Sudhakar, Y.N., Vindyashree, Smitha, V., Prashanthi, Poornesh, P., Ashok, R. and Selvakumar, M. 2015. Conversion of pencil graphite to graphene/polypyrrole nanofiber composite electrodes and its doping effect on the supercapacitive properties. Polym. Eng. Sci. 55(9). 2118-2126. Doi: https://doi.org/10.1002/pen.24053
[48] Sujiono, E.H., Zabrian, D., Dahlan, M.Y., Amin, B.D. & Agus, J., 2020. Graphene oxide based coconut shell waste: synthesis by modified Hummers method and scharacterization. Heliyon. 6(8). e04568. Doi: https://doi.org/10.1016/j.heliyon.2020.e04568
[49] Sun, W.F. & Sun, P.B. 2022. Electrical insulation and radar-wave absorption performances of nanoferrite/liquid-silicone-rubber composites. Int. J. Mol. Sci. 23(18). 10424. Doi: https://doi.org/10.3390/ijms231810424
[50] Santamaría-Juárez, G., Gómez-Barojas, E., Quiroga-González, E., Sánchez-Mora, E., Quintana-Ruiz, M. and Santamaría-Juárez, J.D. 2020. Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Mater. Res. Express. 6(12). 125631. Doi: https://doi.org/10.1088/2053-1591/ab4cbf
[51] Syihabuddin, D.M. & Munasir, M. 2024. Green synthesis nanopartikel Fe3O4 dengan bioreduktor ekstrak daun mimba (Azadirachta indica): aplikasi sebagai material fotokatalis degradasi methylene blue. Inovasi Fisika Indonesia. 13(3). 118–123. Doi: https://doi.org/10.26740/ifi.v13n3.p118-123
[52] Taryana, Y., Manaf, A., Sudrajat, N. & Wahyu, Y. 2019. Material penyerap gelombang elektromagnetik jangkauan frekuensi radar. Jurnal Keramik dan Gelas Indonesia. 28(1). 1-29.
[53] Taufantri, Y., Irdhawati, I. & Asih, I. 2016. Sintesis dan karakterisasi grafena dengan metode reduksi grafit oksida menggunakan pereduksi Zn. Jurnal Kimia VALENSI. 2(1). 17–23. Doi: http://dx.doi.org/10.15408/jkv.v2i1.2233
[54] Tong, G., Du, F., Wu, W., Wu, R., Liu, F. & Liang, Y. 2013. Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process. J. Mater. Chem. B. 1(20). 2647-2657. Doi: https://doi.org/10.1039/c3tb20229a
[55] Usvanda, L.N. & Zainuri, M. 2016. Sintesis dan karakterisasi lapisan radar absorbing material (RAM) berbahan dasar bam/pani pada rentang gelombang x-band dengan variasi ketebalan. Jurnal Sains Dan Seni ITS. 5(2). 129237. Doi: http://dx.doi.org/10.12962/j23373520.v5i2.17900
[56] Visca, R., Dewi, M.N., Liviani, A. & Satriawan, B.D. 2022. Characterization of FTIR in graphite from palm oil waste with ferric chloride catalyst. Interdisciplinary Social Studies. 1(11). 1355-1358. Doi: https://doi.org/10.55324/iss.v1i11.276
[57] Wang, Y., Yang, P., Zheng, L., Shi, X. & Zheng, H. 2020. Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review. Energy Storage Mater. 26. 349-370. Doi: https://doi.org/10.1016/j.ensm.2019.11.006
[58] Yogasundari, M. & Manikandan, A. 2020. Synthesis, structural, morphological and magnetic properties of Fe3O4/ZnO nanocomposites by co-precipitation method. Malaya Journal of Matematik. 1(2). 2264-2266. Doi: https://doi.org/10.26637/MJM0S20/0582
[59] Xu, C., Shi, X., Ji, A., Shi, L., Zhou, C. & Cui, Y. 2015. Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PloS one. 10(12). e0144842. Doi: https://doi.org/10.1371/journal.pone.0144842
[60] Xue, J., Sun, Q., Zhang, Y., Mao, W., Li, F. and Yin, C. 2020. Preparation of a polypyrrole/graphene oxide composite electrode by electrochemical codeposition for capacitor deionization. ACS omega. 5(19). 10995-11004. Doi: https://doi.org/10.1021/acsomega.0c00817
[61] Yang, Z., Sheng, Q., Zhang, S., Zheng, X. & Zheng, J. 2017. One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchim. Acta. 184(7). 2219-2226. Doi: https://doi.org/10.1007/s00604-017-2197-0
[62] Yin, P., Deng, Y., Zhang, L., Huang, J., Li, H., Li, Y., Qi, Y. & Tao, Y. 2018. The microwave absorbing properties of ZnO/Fe3O4/paraffin composites in low frequency band. Mater. Res. Express. 5(2). 026109. Doi: https://doi.org/10.1088/2053-1591/aaae58s
[63] Putra, A., Yohandri, Z., Sumantyo, J.T.S. & Sanjaya, H. 2019. A low-cost radar absorber based on palm shell active carbon for anechoic chamber. Int. J. Adv. Sci. Eng. Inf. Technol. 9. 1976-1981. Doi: https://doi.org/10.18517/ijaseit.9.6.9961
[64] Zhou, A., Yu, T., Liang, X. & Yin, S. 2023. H2O2-free strategy derived from Hummers method for preparing graphene oxide with high oxidation degree. FlatChem. 38. 100487. Doi: https://doi.org/10.1016/j.flatc.2023.100487
[65] Zulpadrianto, Z., Yohandri, Y. & Putra, A. 2018. Development radar absorber material using rice husk carbon for anechoic chamber application. IOP Conf. Ser.: Mater. Sci. Eng. 12002. Doi: https://doi.org/10.1088/1757-899x/335/1/012002
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sorption Studies

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







