

Indones. J. Chem. Stud. 2022, 1(1), 8–12 Available online at journal.solusiriset.com e-ISSN: 2830-7658; p-ISSN: 2830-778X Indonesian Journal of Chemical Studies

Synthesis of Modified TiO₂ Nanocomposite using Fe₃O₄ and Nickel as Photocatalyst in Reduction of Silver

Adya Rizky Pradipta^{1*}, Aslan Irunsah²

¹Department of Chemical Analysis, Politeknik AKA Bogor, Jl. Pangeran Sogiri No.283, Kota Bogor 16154, Indonesia

²Department of Biotechnology, Buton Institute of Marine Technology, Jl. Balai Kota No. 1, Pasarwajo, Buton 93754, Indonesia

Received: 24 May 2022; Revised: 2 Jun 2022; Accepted: 2 Jun 2022; Available online: 10 Jun 2022; Published regularly: 30 Jun 2022

Abstract— The use of TiO₂ nanocomposite modified with Fe₃O₄ dan Ni dopping for silver ion photoreduction has been successfully performed. In this study, nanocomposites were fabricated through the sol-gel technique. Structure, optical, and magnetic properties were analyzed using XRD, DRUV-Vis, FTIR, and VSM analysis. The XRD pattern revealed the anatase phase of TiO₂ and the iron oxide formed was Fe₃O₄. UV-Vis spectroscopy showed the formation of absorption in the visible region in the presence of Ni doping. The nanocomposite had magnetic properties of 12.6 emu/g with paramagnetic type. TiO₂ nanoparticles presented the percentage reductions of Ag ions with UV and Visible light of 82.65% and 21.43%, respectively, while Fe₃O₄/ TiO₂-Ni with UV and Visible light were 80.93% and 90.72%, respectively. Ni-dopped nanocomposites showed high photocatalytic activity under both UV and Visible irradiation.

Keywords— Photocatalyst; TiO₂-Nickel; Nanocomposite; Fe₃O₄; Ag lons.

1. INTRODUCTION

During the last decade, numerous studies on catalysts have been developed as a solution to the environmental pollution issue, especially metal waste, which continues to increase. Silver metal is one of the dangerous metals that is often found in wastewater. Silver metal (Ag) is one of the precious metals that is very commonly used by humans. The use of silver metal on a large scale can result in the accumulation of large amounts of waste. The disposal of waste containing silver ions directly into the environment can cause environmental pollution and various health problems such as agyria (pigmental), brain damage, and central nervous system poisoning [1]. Ag(I) metal ions bound by nitrate ions (NO $_3$) to form AgNO $_3$ can cause skin irritation, are corrosive and can even cause death [2]. Heterogeneous photocatalysis is a widely developed method and is considered to have profound potential to control contaminants, especially in water. Titanium dioxide has caught the attention of numerous researchers in recent decades due to its simple application and ability to be applied to organic, inorganic, and microbiological pollutants. Titanium dioxide has been shown to be the most efficient photocatalyst owing to its strong oxidizing capacity, long-term stability against light and chemical corrosion, suitable band gap energy, and electrical and optical

*Corresponding author. Email address: adya.rizky.p@gmail.com DOI: 10.55749/ijcs.v1i1.7 properties. Moreover, titanium dioxide is photocatalytically stable, relatively easy to produce, and an effective catalyst for chemical reactions [3].

When TiO₂ is utilized as a photocatalyst, many issues arise, such as its wide band gap (3.2 eV), which causes only a tiny portion (5 percent) of the solar spectrum to be absorbed [4,5]. TiO₂ is stimulated only by ultraviolet light; it is inactive when exposed to visible light. In addition, the short distance between the conduction band and the valence band, as well as the rapid e/h+ recombination speed, diminish the performance of TiO₂. Numerous studies have been conducted to manufacture TiO₂-semiconductor composites with decreased band gap energies. Many researchers have synthesized a TiO₂ composites with a modification in which CdS nanoparticles are immobilized in the TiO_2 system. [6-10]. There is also a method of increasing activity by doping cobalt on TiO₂ [11]. Some researchers have succeeded in preparing TiO₂ photocatalyst doped with a luminescence agent. Thus, it can work in visible light [11-13].

With the modifications made (referring to previous research), the TiO_2 material acquires a new energy level formed in the band gap or aids in dealing with ultraviolet light, increasing its photocatalytic activity. Therefore, the photocatalyst can display significant photocatalytic activity even when exposed to sunshine or fluorescent light. However, these advances are

urgently required to enhance the photocatalytic capabilities of TiO₂ photocatalyst [11, 12, 13].

To obtain a TiO₂ photocatalyst that is responsive to a wider range of light, a modification of the band gap energy is required. Furthermore, by applying magnetic behavior to the TiO_2 system, the photocatalyst will have a more significant advantage in the treatment. Magnetic separation means that the material can be used more than once [14,15]. This adds more value to the modification of TiO₂. This work is expected can advance efforts develop continuous to modified TiO₂ photocatalysts to operate efficiently under a wider range of light and work effectively in applications with their separation capabilities.

Recently, numerous studies have focused on expanding the optical absorption of TiO_2 to the visible part of the spectrum in order to substitute UV radiation with sunlight to harness solar energy for practical applications and improve its photocatalytic activity. At present, doping with transition metal elements has been tested to enhance TiO₂ catalysts with visible light response because transition elements have multiple valences and traces of transition metal ions doped in TiO₂ matrix can trap the superficial potential of photogenerated electron-hole pairs, thereby prolonging the lifetime of electrons and holes and enhancing the photocatalytic activity. Furthermore, by applying magnetic behavior to the TiO₂ system, the photocatalyst will be easier to maintain. It can be separated using a magnetic field, so it can be used repeatedly. This adds to the list of advantages of the modified TiO₂. This work is expected to contribute to advancing continuous efforts to develop modified TiO₂ photocatalysts that operate efficiently under visible light, work effectively in Ag ion reduction applications, and improve their separation capabilities.

2. EXPERIMENTAL SECTION

2.1. Materials

The materials used in this research were Fe₂SO₄·7H₂O (Merck), FeCl₃·6H₂O (Merck), NH₄OH 25% (Merck), ethanol, Titanium tetraisopropoxide (TTIP) 97% (Sigma-Aldrich), NaOH, NiCl₂·6H₂O, AgNO₃ (Merck), and deionized water (Inorganic Laboratory UGM).

2.2. Instrumentation

The instruments used for characterization were FTIR spectrophotometer (Shimadzu Prestige 21), X-Ray Diffractometer (Shimadzu XRD 6000), Transmission Electron Microscope (JEOL JEM-1400), Scanning Electron Microscope with Energy Dispersive X-Ray Spectrometer (EDAX SL AMETEK),Diffuse Reflectance UV-Visible Spectrophotometer (Shimadzu 2450), Vibrating Sample Magnetometer (OXFORD VSM 1.2H), and and Atomic Absorption Spectroscopy (Perkin Elmer 3110)

2.3. Procedure

2.3.1 Synthesis of magnetite (Fe304) nanoparticles

In the presence of nitrogen gas, 100 mL of deionized water was used to dissolve 5.41 g FeCl₃·6H₂O and 2.78 g Fe₂SO₄·7H₂O. The solution was ultrasonicated, and a 25% NH₄OH solution was added drop by drop (30 mL). The precipitate was then collected, rinsed with deionized water, and dried overnight at 80 °C.

2.3.2 Synthesis of Fe₃O₄ / TiO₂-Ni nacomposite

A 1:10 mixture of TTIP and distilled water was stirred for at least 60 min using the stirring method. Before adding aged NiCl₂· $6H_2O$ to the TiO₂ sol-gel, 10% of the weight of TiO₂ determined from TTIP was dissolved in ethanol. The combination was then subjected to thirty minutes of ultrasonic irradiation. This procedure produced a combination of Ni-doped TiO₂ sol-gel. Fe₃O₄ powder mixed in a 1:5 ethanol and water solution was ultrasonically irradiated for 15 min. The Ni-doped TiO₂ sol-gel was then added to the magnetite mixture and ultrasonically irradiated for one hour. The resultant solgel composite was dried in an oven before being calcined for four hours at 450 °C.

2.3.3 Photocatalytic activity

The photoreduction procedure was carried out in a batch system in a closed reactor fitted with ultraviolet and visible lamps. The study of the effect of pH on the photoreduction of Ag(I) ions was performed using the following procedure. 25 mL of a solution of 12.5 mg L⁻¹ AgNO₃ was prepared into a beaker containing a magnetic stirrer. Then, 25 mg of TiO₂ and Fe₃O₄ /TiO₂-Ni were added to the solution. The solution added to the catalyst was placed into the photocatalytic reactor. The solution was stirred and irradiated with UV and visible light for 60 min. The photocatalyst was separated using an external magnet. The absorbance of the filtrate before and after the addition of photocatalyst was analyzed using AAS.

3. RESULT AND DISCUSSION

3.1. Crystal Analysis using X-ray Diffraction

XRD analysis indicates the crystallinity and phase of the synthesized sample formation. Fig. 1 displays the XRD patterns of Fe₃O₄, TiO₂, and Fe₃O₄/TiO₂-Ni nanoparticles. Fe₃O₄ diffraction peaks appeared at 20: 30°, 35°, 43°, 54°, 57°, and 63° were assigned to the planes (220), (311), (400), (422), (511), and (440) according to ICDD no: 00-019-0629. The XRD results of the synthesized TiO₂ showed peaks at 25°, 38°, 48°, 54°, 55°, 63°, 75°, and 82° referred to (101), (112), (200), (105), (211), (204), (215), and (224) according to ICDD no: 00-021-1272. The XRD results showed that the synthesized TiO_2 was in the anatase phase. The crystal phase of TiO_2 anatase does not change despite the presence of Ni ions in the TiO₂ lattice. TiO₂ nanoparticles doped with Ni showed peaks with an angular shift of 20. This indicates that the Ni dopant has been successfully added in TiO2 nanoparticles. No significant peaks appeared indicating Ni in the nanocomposite. When Ni ions are doped into the TiO₂ matrix, they will substitute for the TIO₂ matrix. Ni ions will replace Ti in the crystal structure and will produce slightly amorphous properties [18].

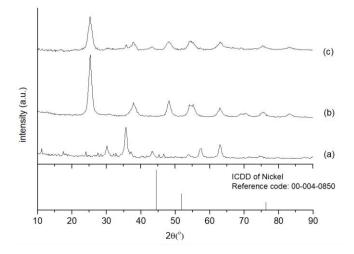


Fig. 1. XRD patterns of (a) Fe $_3O_4$, (b) TiO $_2$, and (c) Fe $_3O_4/TiO_2$ -Ni nanoparticles

3.2. Optical Studies: Diffuse Reflectance UV-Vis

Measurement of the UV-visible absorption of the sample was performed in the wavelength range of 200-800 nm (**Fig. 2**.). The result of the analysis showed maximum absorption in the UV region and a red shift occurred in the presence of Ni dopant. Because of its band gap energy of 3.2-3.4 eV, TiO₂ has the propensity to exclusively absorb UV light. The band gap energy of the sample was computed using the Tauc plot based on its crystalline phase, as seen in **Fig. 2**.

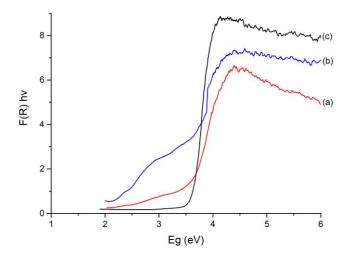


Fig. 2. Band gap estimation-Tauc plot of (a) Fe $_3O_4/TiO_2$, (b) Fe $_3O_4/TiO_2$ -Ni, and (c) TiO_2

The nanoparticles' band gap energy was calculated by constructing a straight line from the Tauc plot [h γ vs. $(\alpha h \gamma)^2$]. The band gap energies for TiO₂ and Fe₃O₄ were, respectively, 3.5 eV and 3.4 eV. Ni-doped Fe₃O₄/TiO₂ specimens have two band gap energies, 3.5 eV and 2.1 eV. The results showed that the band gap energy decreased with the addition of dopants up to Ni. Ni-doped Fe₃O₄/TiO₂ nanocomposite can capture visible light at a wavelength of 588 nm.

3.3. Chemical Bonding Analysis: FTIR

Fig. 3. shows the FTIR spectrum of Fe_3O_4 , TiO_2 , and Fe₃O₄/TiO₂-Ni nanoparticles after being calcined at 450 °C for 2 h. Fe₃O₄ FTIR results showed an absorption band at around 580 cm⁻¹. This indicates Fe-O stretching vibrations. Wavenumbers 3278 and 3448 cm⁻¹ indicate stretching vibration of the hydroxide (-OH) group that is possible from Fe-OH and H₂O. The FTIR analysis of TiO₂ revealed a wide band centered at 500-650 cm⁻¹. This verifies the existence of metal oxide linkages (Ti-O-Ti) [17]. Sharp peaks also emerged at 3440 and 1630 cm^{-1} corresponding to the O-H stretching vibration and the H-O-H bending vibration mode of physically adsorbed water in the synthesized samples. Fe₃O₄/TiO₂-Ni FTIR results reveal an absorption band that is a combination of Fe₃O₄ and TiO₂. However, the effect of the addition of Ni does not show a new absorption band.

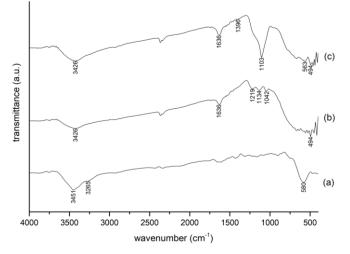


Fig. 3. FTIR Spectra of (a) Fe₃O₄, (b) TiO₂ and (c) Fe₃O₄/TiO₂-Ni nanoparticles

3.4. Morphological Analysis

The surface morphology of Fe_3O_4/TiO_2 was analyzed using SEM and TEM images. **Fig. 4**. exhibits typical SEM and TEM images of Fe_3O_4/TiO_2 -Ni nanoparticles showing a spherical shape with agglomeration. Most particles are almost spherical and have a consistent size distribution, as seen in **Fig. 4**.

The pores detected on the nanocomposite's surface exhibited a mesoporous nature. This may occur because of the nanocrystalline composites aggregating. EDS examination verified the presence of Fe, Ti, Ni, and 0 in the produced samples, as shown in **Fig. 4**. The presence of Cl element in the EDS analysis probably comes from the remains of the FeCl₃ precursor. The results of TEM measurements displayed that the nanocomposite had a size of 23.59 nm with a standard deviation of 2.19 and a dispersity index (DI) value of 0.65.

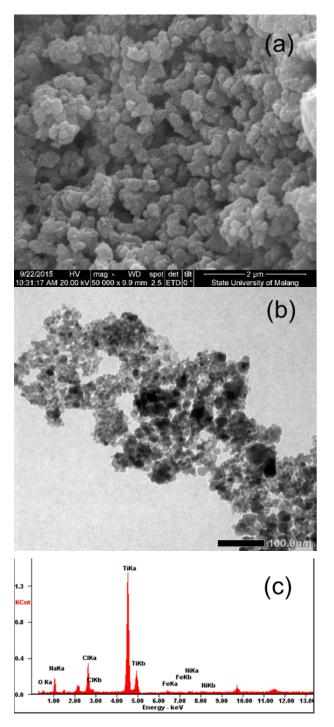
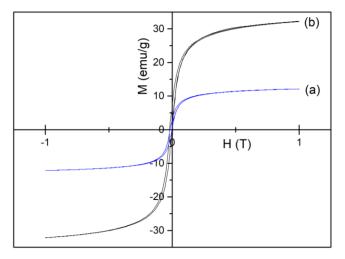
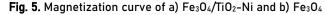




Fig. 4. SEM Image with 50,000x magnification (a), TEM Image with 100,000x magnification (b), and EDS (c) of Fe_3O_4/TiO_2-Ni

3.5. Magnetic Properties

The qualitative test of magnetic properties conducted with VSM showed that the nanocomposites performed magnetic properties, as shown in **Fig. 5**. Thus, it is easy to recover and reuse in the next photocatalysis process. Fe_3O_4 and Fe_3O_4/TiO_2-Ni nanoparticles have paramagnetic type magnetic properties. Fe_3O_4 material has the largest magnetic moment 33.2 emu/g and Fe_3O_4/TiO_2-Ni has a magnetic moment 12.6 emu/g. The decrease in the magnetic properties of the nanocomposite is caused by the addition of TiO₂ and Ni increasing the weight of the material.

3.6. Photoreduction Activity

The photocatalytic activity was tested using UV and visible light, as displayed in Fig. 6. The nanocomposite had almost the same photocatalytic activity as TiO₂ with the use of UV light. TiO₂ nanoparticles provided a reduction percentage of Ag ions of 49,24% while Fe₃O₄/TiO₂-Ni 80.93%. However, the later had a much higher activity when using visible light than TiO₂. The nanocomposite provided the percentage of Ag ion reduction of 90.72% while TiO₂ was only 15,43%. This indicates that Ni has been successfully doped on TiO₂, so it can work in visible light. Fe₃O₄ also plays a role in photocatalytic activity where Fe₃O₄ is also a semiconductor with a band gap energy in the visible light region [18]. Even so, the role of Fe₃O₄ is not as significant as the role of Ni in the photocatalytic process. This is due to the position of Fe₃O₄, which is on the inside and is covered by TiO₂, so it is difficult to make contact with the sample.

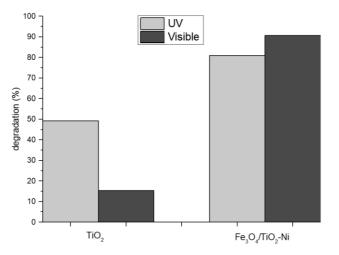


Fig. 6. Photocatalytic activity of the materials in the photoreduction of Ag ions.

4. CONCLUSION

In summary, TiO₂ nanoparticles modified with Fe₃O₄ and doped with Ni were synthesized by the sol-gel method. The results of X-ray diffraction exhibited the formation of TiO₂ in the anatase phase. The optical absorption spectrum of Fe₃O₄/TiO₂-Ni showed absorption in the visible region. SEM and TEM images displayed spherical morphology and agglomeration. EDS confirmed the presence of Ni in the synthesized nanocomposite. The synthesized nanocomposite showed magnetic properties confirmed by VSM. The photocatalytic activity of Fe₃O₄/TiO₂-Ni was much higher using visible light than TiO₂ without modification.

ACKNOWLEDGEMENTS

The authors highly acknowledge Prof. Dr. Eko Sri Kunarti, who has guided this research, and the Head of Inorganic Laboratory, Universitas Gadjah Mada, for permitting the use of the research facilities.

CONFLICT OF INTEREST

We declare that there is no conflict of interest among authors.

AUTHOR CONTRIBUTIONS

ARP conducted the experiment and interpretation, ARP and AI wrote and revised the manuscript. All authors agreed to the final version of this manuscript.

REFERENCES

- [1] Jung, I., Joo, E.-J., Suh, B.S., Ham, C.-B., Han, J.-M., Kim, Y.-G., Yeom, J.-S., Choi, J.-Y., & Park, J.-H. 2017. A case of generalized argyria presenting with muscle weakness. *Ann. Occup. Environ. Med.* 29(45), 1-5. doi: 10.1186/s40557-017-0201-0.
- [2] Kim, J.S., Song, K.S., Sung, J.H., Ryu, H.R., Choi, B.G., Cho, H.S., Lee, J.K., & Yu, I.J. 2013. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. *Nanotoxicology*. 7(5). 953–960. doi: 10.3109/17435390.2012.676099.
- [4] Sun, S., Zhang, J., Gao, P., Wang, Y., Li, X., Wu, T., Wang, Y., Chen, Y., & Yang, P. 2017. Full visible-light absorption of TiO₂ nanotubes induced by anionic S₂²⁻ doping and their greatly enhanced photocatalytic hydrogen production abilities. *Appl. Catal. B Environ.* 206. 168–174. doi: 10.1016/j.apcatb.2017.01.027.
- [5] Zubair, M., Kim, H., Razzaq, A., Grimes, C.A., & In, S.-I. 2018. Solar spectrum photocatalytic conversion of CO₂ to CH₄ utilizing

 TiO_2 nanotube arrays embedded with graphene quantum dots. J. CO2 Util. 26. 70–79. doi: 10.1016/j.jcou.2018.04.004.

- [6] Hirai, T., Suzuki, K., & Komasawa, I. 2001. Preparation and Photocatalytic Properties of Composite CdS Nanoparticles-Titanium Dioxide Particles. *J. Colloid Interface Sci.* 244(2). 262– 265. doi: 10.1006/jcis.2001.7982.
- [7] Kaur, A., Umar, A., Anderson, W.A., & Kansal, S.K. 2018. Facile synthesis of CdS/TiO₂ nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. *J. Photochem. Photobiol. A Chem.* 360. 34-43. doi: 10.1016/j.jphotochem.2018.04.021.
- [8] Du, Y.-E., Niu, X., He, X., Hou, K., Liu, H., & Zhang, C. 2021. Synthesis and Photocatalytic Activity of TiO(2)/CdS Nanocomposites with Co-Exposed Anatase Highly Reactive Facets. Molecules. 26(19). 6031. doi: 10.3390/molecules26196031.
- [9] Song, J., Zeng, D., Xie, Y., Zhang, F., Rao, S., Wang, F., Zhao, J., Zhang, J., & Wang, L. 2020. Preparation of CdS nanoparticles-TiO₂ nanorod hererojunction and their high-performance photocatalytic activity. *Catalysts.* 10(441). 1-14. doi: 10.3390/catal10040441.
- [10] Kudhier, M.A., ALKareem, R.A.S.A., & Sabry, R.S. 2021. Enhanced photocatalytic activity of TiO₂-CdS composite nanofibers under sunlight irradiation**. *J. Mech. Behav. Mater.* 30(1). 213–219. doi: 10.1515/jmbm-2021-0022.
- [11] Ramadhan, M., Pradipta, A.R., & Kunarti, E.S. 2017. Synthesis of Fe₃O₄/TiO₂-Co nanocomposite as model of photocatalyst with magnetic properties, *Mater. Sci. Forum*, 901, 14-19 doi: 10.4028/www.scientific.net/MSF.901.14.
- [12] Gao, J., Jiang, R., Wang, J., Wang, B., Li, K., Kang, P., Li, Y., & Zhang, X. 2011. Sonocatalytic performance of Er³⁺:YAlO₃/TiO₂-Fe₂O₃ in organic dye degradation. *Chem. Eng. J.* 168(3). 1041– 1048. doi: https://doi.org/10.1016/j.cej.2011.01.079.
- [13] Trabelsi, F., Mercier, F., Blanquet, E., Crisci, A., & Salhi, R. 2020. Synthesis of upconversion TiO₂:Er³⁺-Yb³⁺ nanoparticles and deposition of thin films by spin coating technique. *Ceram. Int.* 46(18, Part A). 28183–28192. doi: 10.1016/j.ceramint.2020.07.317.
- [14] Jarosz-Duda, A., O'Callaghan, P., Kuncewicz, J., Łabuz, P., & Macyk, W. 2020. Enhanced UV Light Emission by Core-Shell Upconverting Particles Powering up TiO₂ Photocatalysis in Near-Infrared Light, *Catalysis*, 10(232). 1-10 doi: 10.3390/catal10020232.
- [15] Pradipta, A.R., Mauludi, K., Kartini, I., & Kunarti, E.S. 2020. Synthesis of Fe₃O₄/TiO₂ Nanocomposite as Photocatalyst in Photoreduction Reaction of CO₂ Conversion to Methanol, *Key Eng. Mater.* 840. 454-458 doi: 10.4028/www.scientific.net/KEM.840.454.
- [16] Sakthivel, T., Kumar, K.A., Senthilselvan, J., & Jagannathan, K. 2018. Effect of Ni dopant in TiO₂ matrix on its interfacial charge transportation and efficiency of DSSCs. *J. Mater. Sci. Mater. Electron.* 29(3). 2228–2235. doi: 10.1007/s10854-017-8137-2.
- [17] Kunarti, E., Syoufian, A., Budi, I., & Pradipta, A. 2016. Preparation and Properties of Fe₃O₄/SiO₂/TiO₂ Core-Shell Nanocomposite as Recoverable Photocatalyst. *Asian J. Chem.* 28. 1343–1346. doi: 10.14233/ajchem.2016.19697.
- [18] Pradipta, A.R., Enriyani, R., Rahmatia, L., & Utami, A. 2021. Sintesis Nanokomposit Fe₃O₄/TiO₂ Sebagai Fotokatalis yang Dapat Diambil Kembali Dalam Fotoreduksi Limbah Ion Perak(I). *War. Akab.* 44(2). 32–39. doi: 10.55075/wa.v45i1.6.

12